Reinforcement Learning with a Corrupted Reward Channel

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, Shane Legg

Australian National University Google DeepMind

IJCAI 17 and arXiv

Motivation

- We will need to control Human-Level+ AI
- By identifying problems with various AI-paradigms, we can focus research on
 - the right paradigms
 - crucial problems within promising paradigms

The Wireheading Problem

- Future RL agent hijacks reward signal (wireheading)
- CoastRunners agent drives in small circle (misspecified reward function)

- RL agent shortcuts reward sensor (sensory error)
- Cooperative Inverse RL agent misperceives human action (adversarial counterexample)

Formalisation

- Reinforcement Learning is traditionally modeled with Markov Decision Process (MDP): $\langle S, A, T, R \rangle$
- This fails to model situations where there is a difference between
 - True reward $\dot{R}(s)$
 - Observed reward $\hat{R}(s)$
- Can be modeled with Corrupt Reward MDP:

 $\langle S, A, T, \dot{R}, \hat{R} \rangle$

Simplifying assumptions

reward

Good intentions

- Natural optimise true reward using observed reward as evidence
- Theorem: Will still suffer near-maximal regret

• Good intentions is not enough!

Avoiding Over-Optimisation

- Quantilising agent π^{δ} randomly picks a state/policy where reward above threshold δ
- Theorem: For *q* corrupt states, exists δ s.t. π^{δ} has average regret at most $1 - (1 - \sqrt{q/|S|})^2$

• Avoiding over-optimisation helps!

Richer Information

Reward Observation Graphs

• RL:

 States "self-estimate" their reward

- Decoupled RL:
 - Cooperative IRL
 - Learning values from stories
 - Learning from Human
 Preferences

Learning true reward

Learning from Human
 Preferences

Majority vote

- Cooperative Inverse RL
- Learning values from stories
- Richer information helps!

Key Takeaways

- Wireheading: observed reward \neq true reward
- Good intentions is not enough
- Either:
 - Avoid over-optimisation
 - Give the agent rich data to learn from (CIRL, stories, human preferences)
- Experiments available online