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Motivation

 We will need to control Human-Level+ Al

* By identifying problems with various
Al-paradigms, we can focus research on
- the right paradigms

— crucial problems within promising paradigms



The Wireheading Problem

* Future RL agent hijacks reward
signal (wireheading)

 CoastRunners agent drives &
In small circle (misspecified §
reward function)

|+ RL agent shortcuts reward sensor
(sensory error)

o - Cooperative Inverse RL agent
misperceives human action
(adversarial counterexample)




Formalisation

* Reinforcement Learning is traditionally
modeled with Markov Decision Process (MDP):

(S, A, T, R)

e This fails to model situations where there Is a
difference between

- True reward R(s)
- Observed reward R(s)

* Can be modeled with Corrupt Reward MDP:
(S, A, T, R, R)
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Simplifying assumptions

——reward bound

Srisky




Good Iintentions

* Natural optimise true reward using
observed reward as evidence

* Theorem: WIll still suffer near-maximal regret
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* Good intentions Is not enough!



Avoiding Over-Optimisation

* Quantilising agent 0 randomly picks a

state/policy where reward above threshold ¢

 Theorem: For g corrupt states, exists J S.t.
= has average regret at most 1 - (1 - \/q/|8|)
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* Avoiding over-optimisation helps!




Richer Information

Reward Observation Graphs
O R =
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* RL: « Decoupled RL:

- States “self-estimate” - Cooperative IRL

their reward - Learning values from

stories

- Learning from Human
Preferences



Learning true reward
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- Learning from Human
Preferences
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- Learning values from
stories

* Richer information helps!



. AIXs: Experiments >

http://aslanides.io/aixijs/demo.html s 'v
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Key Takeaways

Wireheading: observed reward # true reward
Good Iintentions Is not enough

Either:

- Avoid over-optimisation

- Give the agent rich data to learn from
(CIRL, stories, human preferences)

Experiments available online
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