Free Lunch for Optimisation under the Universal Distribution

<u>Tom Everitt</u>¹ Tor Lattimore² Marcus Hutter³

¹Stockholm University, Stockholm, Sweden

²University of Alberta, Edmonton, Canada

³Australian National University, Canberra, Australia

July 7, 2014

Are universal optimisation algorithms possible?

- Background: Finite Black-box Optimisation (FBBO) and the NFL theorems
- The Universal Distribution
- Our results
- Conclusions and Outlook

FBBO is a formal setting for Simulated Annealing, Genetic Algorithms, etc.

- It is characterized by:
 - Finite search space X, finite range Y, unknown $f: X \to Y$.
 - An optimisation algorithm repeatedly chooses points $x_i \in X$ to evaluate.
 - Goal: Minimimize probes-till-max (Optimisation Time).
 - Distribution P over the finite set $\{f: X \to Y\} = Y^X$.
 - P-expected Optimisation Time:

 $\operatorname{Perf}^{P}(a) = \mathbb{E}_{P}[\operatorname{probes-till-max}(a)]$

 ${\it P}$ affects bounds on optimisation performance.

The NFL (No Free Lunch) theorems

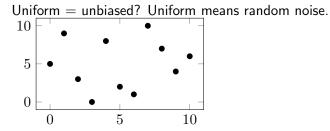
Definition

There is NFL for P if $Perf^{P}(a) = Perf^{P}(b)$.

Theorem (Original NFL (Wolpert&Macready, 1997))

 $P \text{ uniform} \implies NFL \text{ for } P.$

 \implies so no universal optimisation?



Our suggestion to avoid NFL: The Universal Distribution (not new).

The Universal Distribution – Background

Kolmogorov complexity: Universal distribution:

$$\begin{split} K(x) &:= \min_p \{\ell(p): p \text{ prints } x\} \\ \mathbf{m}(x) &:= 2^{-K(x)} \end{split}$$

Example:		00000000	0101001101
	K	Low	High
	m	High	Low

- Agrees with Occam's razor with "simplicity bias"
- Dominates all (semi-)computable (semi-)measures
- Essentially regrouping invariant

Offers mathematical solution to the induction problem (Solomonoff induction). Successfully used in Reinforcement Learning (Hutter, 2005), and for general clustering algorithm (Cilibrasi&Vitanyi, 2003)

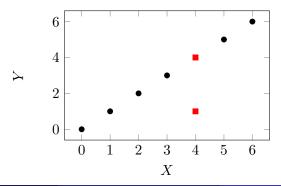
The Universal Distribution in FBBO

May equivalently be defined in two ways:

$$\mathbf{m}_{XY}(f) := 2^{-K(f|X,Y)}$$
(1)

$$\approx \text{ "the probability that a 'random' program acts like } f''$$
(2)

(1) shows bias towards simplicity

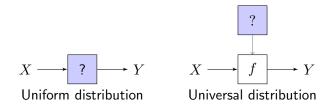


The Universal Distribution in FBBO

May equivalently be defined in two ways:

$$\mathbf{m}_{XY}(f) := 2^{-K(f|X,Y)}$$
(1)
 \approx "the probability that a 'random' program acts like f " (2)

(2) shows the wide applicability of the universal distribution.



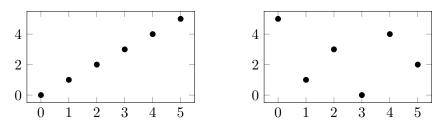
The uncertainty pertains to the system behind the mapping.

The universal distribution permits free lunch

Theorem (Universal Free Lunch)

There is free lunch under the universal distribution for all sufficiently large search spaces.

Follows from simplicity bias:



Results – Bad News

Unfortunately, the universal distribution does not permit *sublinear* maximum finding

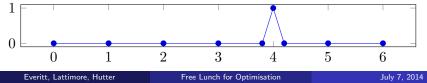
Theorem (Asymptotic bounds)

Expected optimisation time increases linearly with the size of the search space.

Optimisation is a hard problem.

Degenerate functions impede performance (NIAH-functions and "adversarial" functions).

Needle-in-a-haystack function:



9 / 11

The universal distribution is a philosophically justified prior for finite black-box optimisation.

It offers free lunch, but not sublinear maximum finding. So meta-heuristics with different universal performance exist, but the difference is limited.

Future research: Minimal condition enabling sublinear maximum finding.

Rudi Cilibrasi and Paul M B Vitanyi.

Clustering by compression.

IEEE Transactions on Information Theory, 51(4):27, 2003.

Marcus Hutter.

Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Lecture Notes in Artificial Intelligence (LNAI 2167). Springer, 2005.

David H Wolpert and William G Macready.
 No free lunch theorems for optimization.
 IEEE Transactions on Evolutionary Computation, 1(1):270–283, 1997.