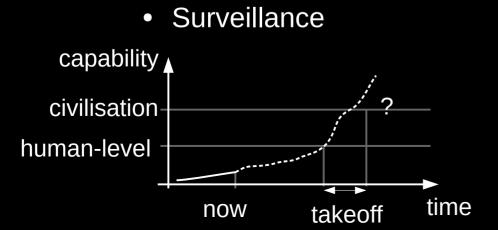
Al Safety

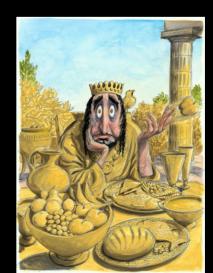
Tom Everitt 27 November 2016

Assumed Background

- AI/ML progressing fast
 - Deep Learning, DQN
 - Increasing investments: HLAI 10 years? SuperAI soon after
 - "Systemic" risks:
 - Unemployment
 - Autonomous warfare



- Existential risks
 - Evil genie effect
 - Distinction between:
 - Good at achieving goals (intelligence)
 - Having good goals (value alignment)



Assumption 1 (Utility)

• The performance (or utility) of the agent is how well it optimises a true utility function $u: (\mathcal{A} \times \mathcal{E})^* \to \mathbb{R}$

possible experiences

- $u(ae_{< t})$ is the time-t performance of agent
- Want agent to maximise

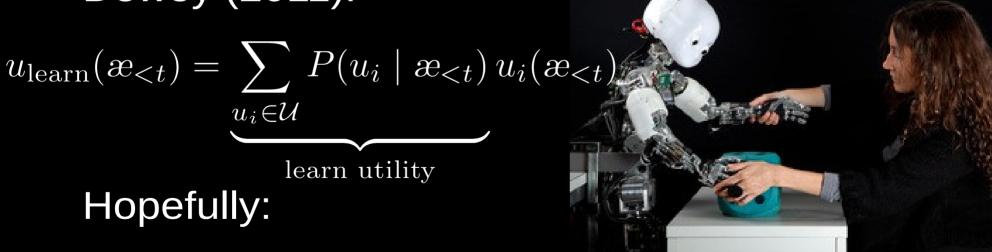
$$\sum_{t=1}^{\infty} u(x_{< t})$$

http://www.gandgtech.com/utility_industry_technology.php

Assumption 2 (Learning)

- It is not possible to (programmatically) express the true utility function $u: (\mathcal{A} \times \mathcal{E})^* \to \mathbb{R}$
- The agent has to learn *u* from sensory data
- Dewey (2011):

possible experiences

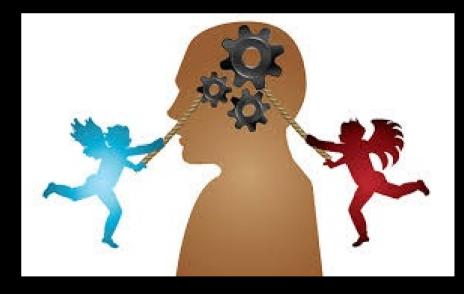


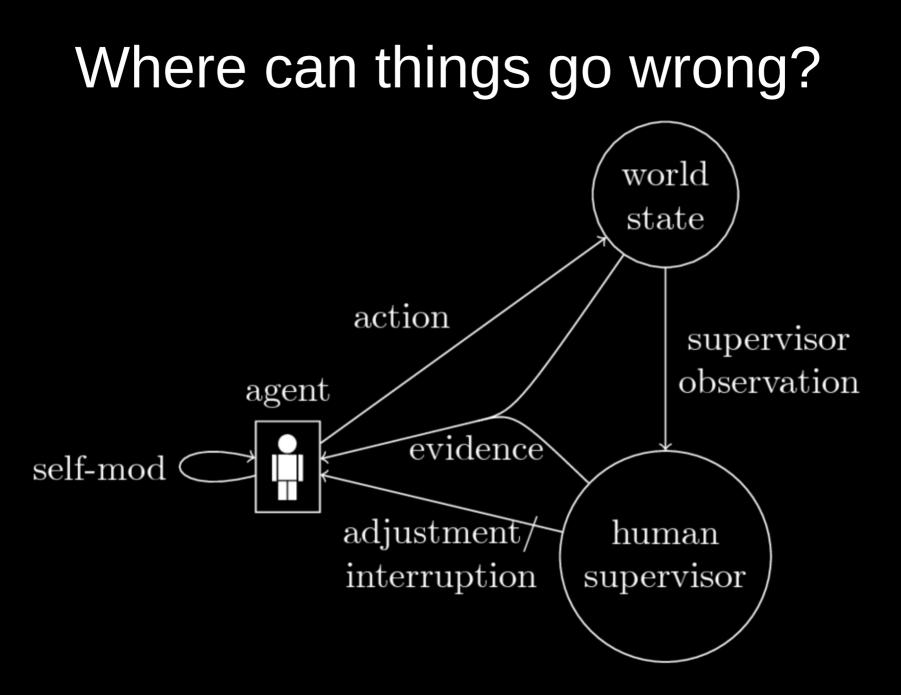
 $u_{\text{learn}} \to u \text{ as } t \to \infty$

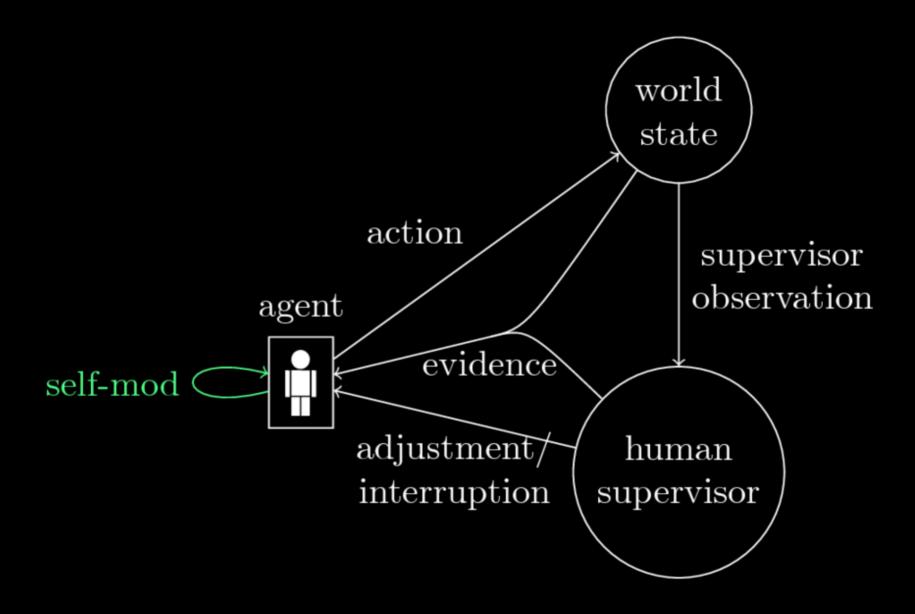
http://users.eecs.northwestern.edu/~argall/learning.html

Assumption 3 (Ethical Authority)

- Humans are ethical authorities
- By definition?
- Human control = Safety?







Self-modification

- Will the agent want to change itself?
- Omohundro (2008):

An AI will not want to change its goals, because if future versions of the AI want the same goal, then the goal is more likely to be achieved

• As humans, utility function is part of our identity: Would you self-modify into someone content just watching TV?

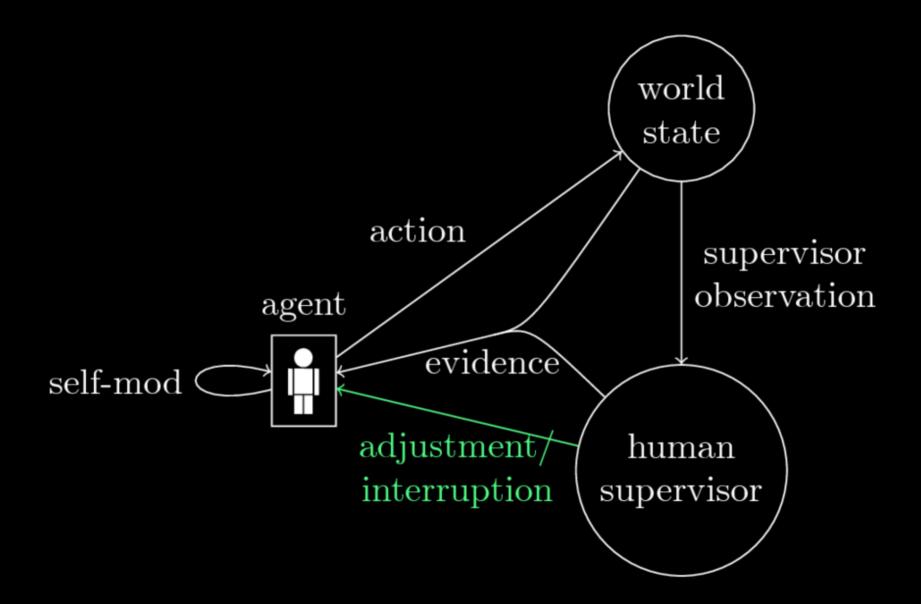
Self-Modification

- Everitt et al. (2016): Formalising Omohundro's argument
- Three types of agents

Wants to self-modify

Doesn't understand the difference

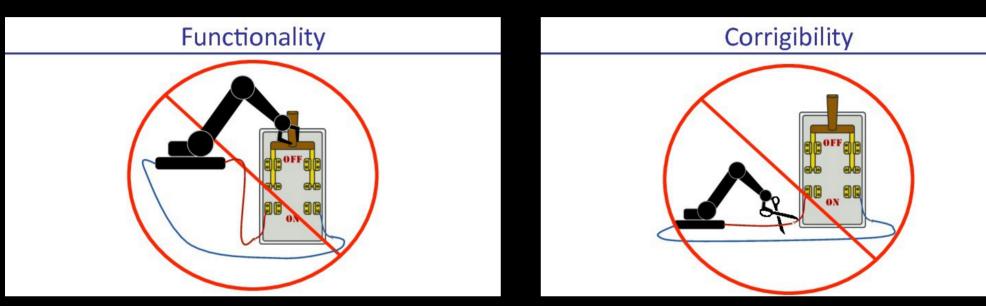
Resists (self)-modification



Corrigibility/Interruptability

- What if we want to modify or shut down agent?
- Opposes self-preservation drive?
- Depends reward range for AIXI-like agents (Martin et al., 2016)

Functionality vs. Corrigibility



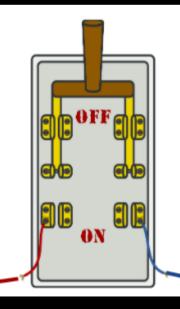
- Either being on or being off will have higher utility
- Why let the human decide?

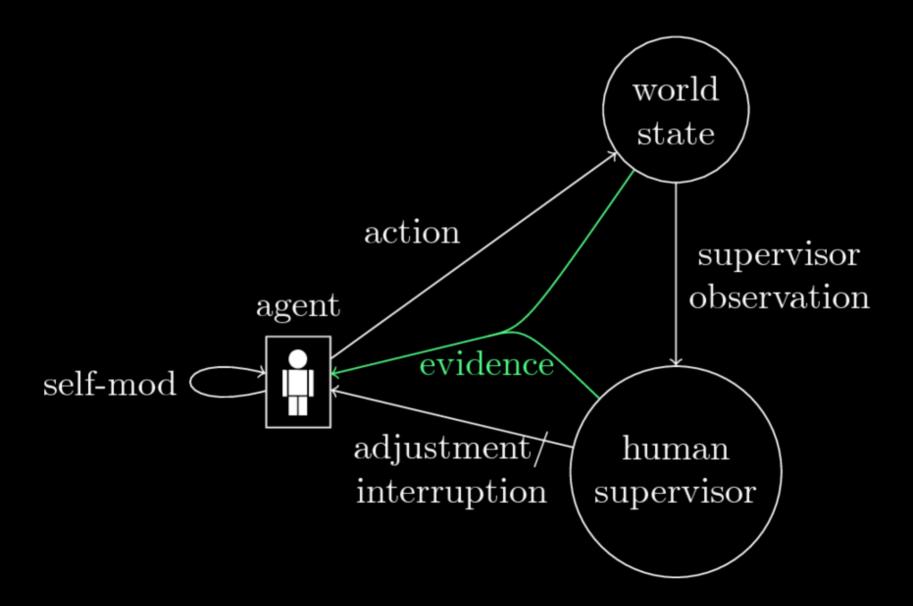
Cooperative Inverse Reinforcement Learning (Hadfield-Menell et al, 2016)

Doesn't know u

Knows u Possibly irrational

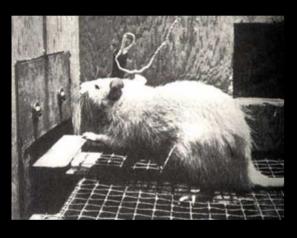
- Optimal action for agent is to let human decide, assuming:
 - Agent sufficiently uncertain about u, and
 - Agent believes human is sufficiently rational
- See also Safely Interruptible Agents (fiddles with details in the learning process) (Orseau & Armstrong, 2016)





Evidence Manipulation

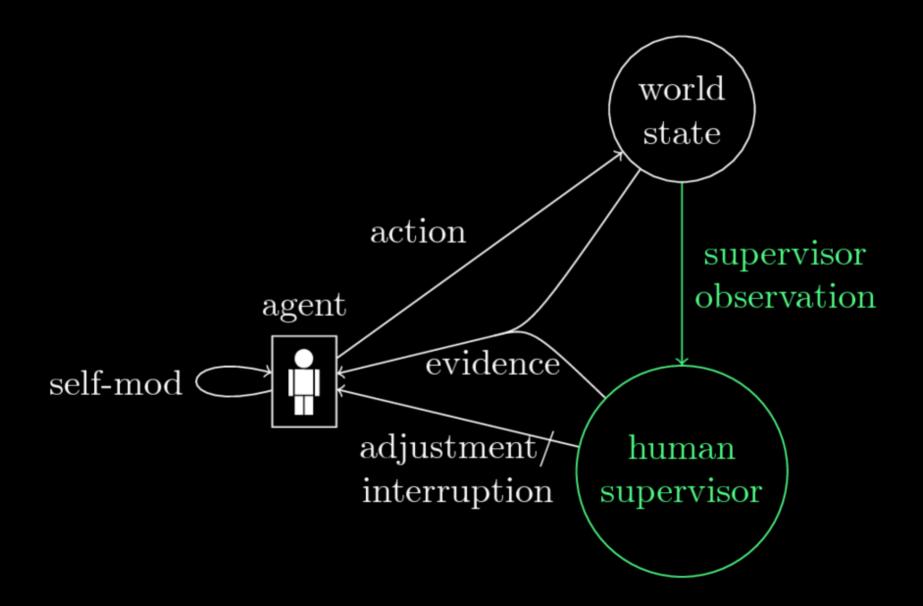
 Aka Wireheading, Delusionbox



- Ring and Orseau (2011):
 - Intelligent, real-world, reward maximising (RL) agent will wirehead
 - Knowledge-seeking agent will not wirehead

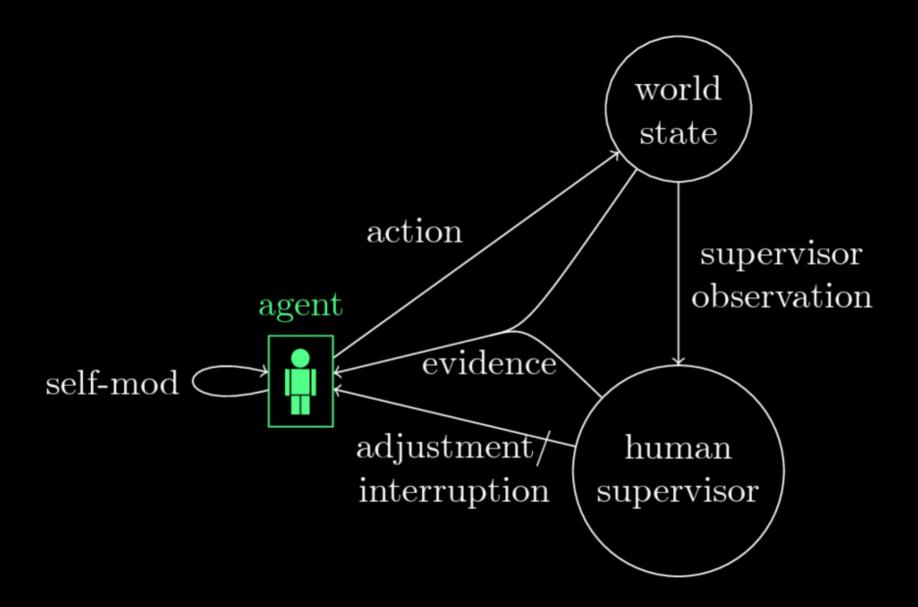
Value Reinforcement Learning

- Everitt and Hutter (2016)
- Instead of optimising r, optimise $\sum_i P(u_i|h, r_{1:t})u_i(h)$ with reward as evidence about true utility function
- 'Too-good-to-be-true' condition removes incentive to wirehead
- Current project:
 - Learn what a delusion is
 - No 'too-good-to-be-true' condition
 - Avoid wireheading by accident



Supervisor Manipulation

- What about putting the human in a delusion box? (Matrix trilogy)
- No serious work yet
- Hedonistic utilitarians need not worry



(Imperfect) Learning

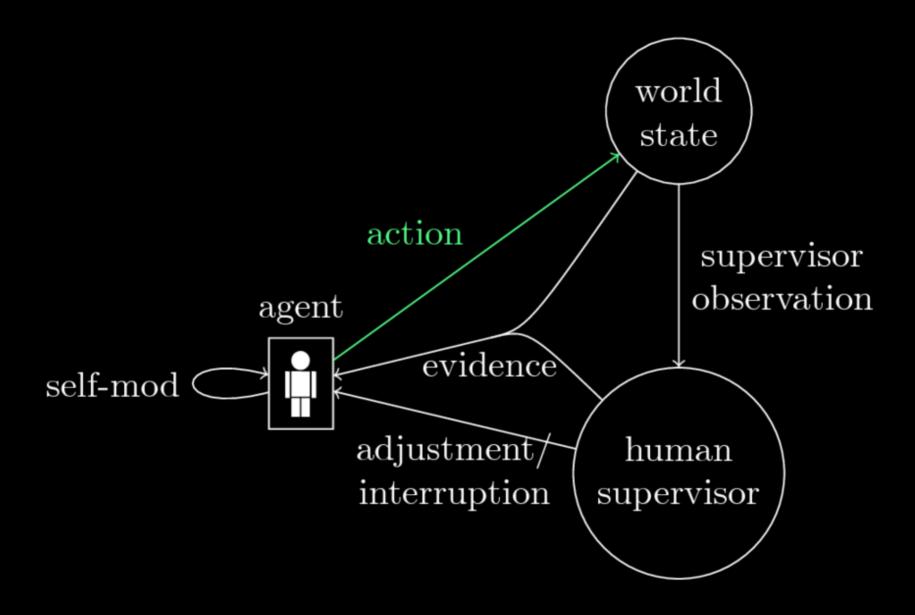
- Ideal learning:
 - Bayes theorem, conditional probability $P(\nu, u_i|h)$ AIXI/Solomonoff induction
- In practice: Model-free learning more efficient $\mathbb{E}[\sum_{k=t}^{\infty} r_k \mid h_t, a]$
 - Q-learning
 - Sarsa
- Current project: Model-free AIXI/General RL

MIRI's Logical inductor (2016)

- General model of belief states for deductively limited reasoners
- Good properties
 - Converges to probability
 - Outpaces deduction
 - Self-trust
 - Scientific induction

Decision Making

- Open source Prisoner's Dilemma Barasz et al. (2014), Critch (2016)
- Refinements of Expected Utility Maximisation:
 - Causal DT
 - Evidential DT
 - Updateless DT
 - Timeless DT
- Logical inductors possibly useful (current MIRI research)

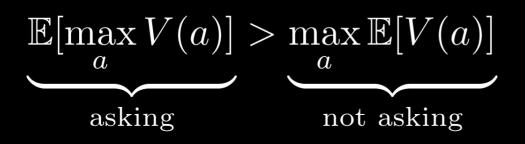


Biased Learning

• Cake or Death?

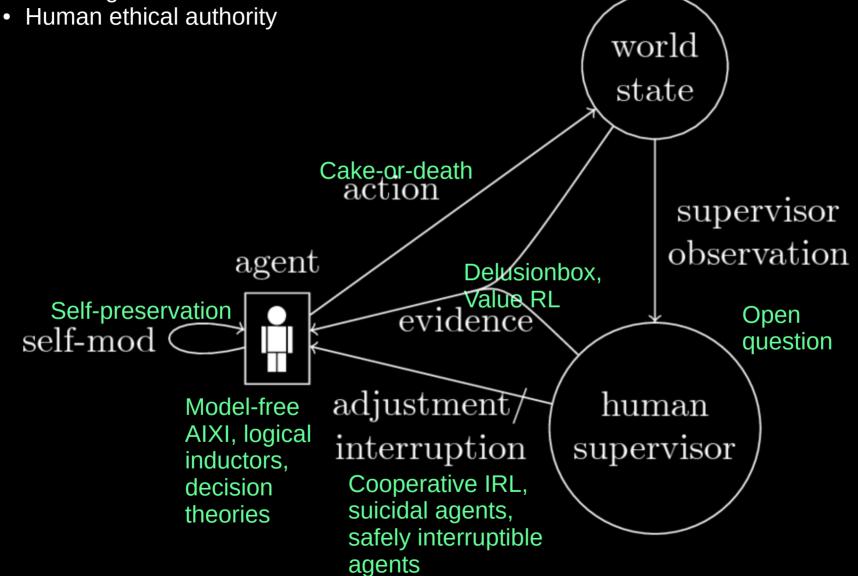
-
$$P(u_{\text{death}}) = P(u_{\text{cake}}) = 0.5$$

- Options:
 - Kill 3 people
 - Bake 1 cake
 - Ask (for free) what's the right thing to do
- u(ask, bake cake) = 1
- u(kill) = 1.5
- Motivated value selection (Armstrong, 2015) Interactive inverse RL (Armstrong and Leike, 2016)
- For properly Bayesian agents, no problem:



Assumptions:

- True utility function
- Learning



References

- Armstrong (2015) Motivated Value Selection. AAAI Workshop
- Armstrong and Leike (2016)
 Interactive Inverse Reinforcement Learning. NIPS workshop
- Barasz, Christiano, Fallenstein, Herreshoff, LaVictoire, Yudkowsky (2014) Robust Cooperation in the Prisoner's Dilemma: Program Equilibrium via Provability Logic. Arxiv
- Critch (2016) Parametric Bounded Löb's Theorem and Robust Cooperation of Bounded Agents. Arxiv
- Dewey (2011) Learning what to value. AGI
- Everitt, Filan, Daswani, and Hutter (2016) Self-modification of policy and utility function in rational agents, AGI.
- Everitt and Hutter (2016) Avoiding Wireheading with Value Reinforcement Learning. AGI
- Garrabrant, Benson-Tilsen, Critch, Soares, Taylor (2016) Logical Induction. Arxiv
- Martin, Everitt, and Hutter (2016)
 Death and Suicide in Universal Artificial Intelligence, AGI
- Omohundro (2008) The Basic AI Drives, AGI
- Hadfield-Menell, Dragan, Abbeel, Russell (2016) Cooperative Inverse Reinforcement Learning. Arxiv
- Orseau and Armstrong (2016) Safely interruptible agents. UAI
- Ring and Orseau (2011) Delusion, Survival, and Intelligent Agents. AGI