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Assumed Background

● AI/ML progressing fast

– Deep Learning, DQN

– Increasing investments:
HLAI 10 years? SuperAI
soon after

– “Systemic” risks:
● Unemployment
● Autonomous warfare
● Surveillance

● Existential risks

– Evil genie effect

– Distinction between:
● Good at achieving

goals (intelligence)
● Having good goals

(value alignment)

capability

time

human-level

now takeoff

?civilisation



  

Assumption 1 (Utility)

● The performance (or utility) of the agent is
how well it optimises a true utility function

●                 is the time-t
performance of agent

● Want agent to maximise

 

http://www.gandgtech.com/utility_industry_technology.php



  

Assumption 2 (Learning)

● It is not possible to (programmatically) express
the true utility function

● The agent has to learn
u from sensory data

● Dewey (2011):

Hopefully:

http://users.eecs.northwestern.edu/~argall/learning.html



  

Assumption 3 (Ethical Authority)

● Humans are ethical authorities

● By definition?

● Human control = Safety?



  

Where can things go wrong?



  



  

Self-modification

● Will the agent want to change itself?

● Omohundro (2008):

An AI will not want to change its goals, because
if future versions of the AI want the same goal,
then the goal is more likely to be achieved

● As humans, utility function is part of our identity:
Would you self-modify into someone content
just watching TV?



  

Self-Modification

● Everitt et al. (2016): Formalising Omohundro’s
argument

● Three types of agents

Hedonistic Ignorant Realistic 

Wants to self-modify Doesn’t understand the difference Resists (self)-modification



  



  

Corrigibility/Interruptability

● What if we want to modify or shut down agent?

● Opposes self-preservation drive?

● Depends reward range for AIXI-like agents
(Martin et al., 2016)

r = 0
Death

r = -1 r = 1 



  

Functionality vs. Corrigibility

● Either being on or being off will have higher
utility

● Why let the human decide?



  

Cooperative Inverse Reinforcement
Learning (Hadfield-Menell et al, 2016)

● Optimal action for agent is
to let human decide,
assuming:

– Agent sufficiently uncertain
about u, and

– Agent believes human is
sufficiently rational

● See also Safely Interruptible
Agents (fiddles with details
in the learning process)
(Orseau & Armstrong, 2016)

Knows u
Possibly irrational

Doesn’t know u



  



  

Evidence Manipulation

● Aka Wireheading,
Delusionbox

http://www.cinemablend.com/new/Wachowskis-Planning-Matrix-Trilogy-41905.html

● Ring and Orseau (2011):

– Intelligent, real-world, reward maximising (RL)
agent will wirehead

– Knowledge-seeking agent will not wirehead



  

Value Reinforcement Learning

● Everitt and Hutter (2016)

● Instead of optimising r,  optimise
with reward as evidence about true utility function

● ‘Too-good-to-be-true’ condition removes incentive to
wirehead

● Current project:

– Learn what a delusion is

– No ‘too-good-to-be-true’ condition

– Avoid wireheading by accident



  



  

Supervisor Manipulation

● What about putting the human in a delusion
box? (Matrix trilogy)

● No serious work yet

● Hedonistic utilitarians need not worry



  



  

(Imperfect) Learning
● Ideal learning:

– Bayes theorem,
conditional probability

– AIXI/Solomonoff induction

MIRI’s Logical inductor (2016)

● General model of belief states for
deductively limited reasoners

● Good properties

– Converges to probability

– Outpaces deduction

– Self-trust

– Scientific induction

● In practice: Model-free
learning more efficient

– Q-learning

– Sarsa

● Current project: Model-free
AIXI/General RL

http://childpsychologistindia.blogspot.com.au/2013/10/difference-between-slow-learner-and.html



  

Decision Making

● Open source Prisoner’s Dilemma
Barasz et al. (2014), Critch (2016)

● Refinements of Expected Utility
Maximisation:

– Causal DT

– Evidential DT

– Updateless DT

– Timeless DT

● Logical inductors possibly useful
(current MIRI research)



  



  

Biased Learning

● Cake or Death?

–

– Options:
● Kill 3 people
● Bake 1 cake
● Ask (for free) what’s the right thing to do

– u(ask, bake cake) = 1

– u(kill) = 1.5

● Motivated value selection (Armstrong, 2015) 
Interactive inverse RL (Armstrong and Leike, 2016) 

● For properly Bayesian agents, no problem:



  

Cake-or-death

Open
question

Cooperative IRL,
suicidal agents,
safely interruptible
agents

Self-preservation

Model-free
AIXI, logical
inductors,
decision
theories

Delusionbox,
Value RL

Assumptions:
● True utility function 
● Learning
● Human ethical authority 
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