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Motivation

(Graph) search is a fundamental AI problem:
planning, learning, problem solving

Hundreds of algorithms have been developed, including metaheuristics
such as simulated annealing, genetic algorithms.

These are often heuristically motivated, lacking solid theoretical
footing.

For theoretical approach, return to basics: BFS and DFS.

So far, mainly worst-case results have been available (we focus on
average/expected runtime).
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Breadth-first Search (BFS)

Korf et al. (2001) found a clever way
to analyse IDA*, which essentially is
a generalisation of BFS.

Later generalised by Zahavi et al.
(2010).

Both are essentially worst-case re-
sults.
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Depth-first Search (DFS)

Knuth (1975) developed a way to estimate search tree size and DFS
worst-case performance.

s0

Assume the same number of children
in other branches.
Estimate ≈ 2 · 3 · 3 · 2 = 36 leaves.

Refinements and applications

Purdom (1978): Use several
branches instead of one

Chen (1992): Use stratified
sampling

Kilby et al. (2006): The
estimates can be used to select
best SAT algorithm
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Potential gains

We focus on average or expected runtime of BFS and DFS rather than
worst-case.

Selling points:

Good to have an idea how long a search might take

Useful for algorithm selection (Rice, 1975)

May be used for constructing meta-heuristics

Precise understanding of basics often useful
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BFS and DFS

BFS and DFS are opposites.
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focuses far from the start node
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Formal setups

We analyse BFS and DFS expected runtime in a sequence of increasingly
general models.

1 Tree with a single level of goals

2 Tree with multiple levels of goals

3 General graph

Increasingly coarse approximations are required
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Simplest model - Tree with Single Goal Level

Our simplest model assumes a complete tree with:

D = 3,

A max search depth D ∈ N,

A goal level g ∈ {0, . . . , D}
Nodes on level g are goals with
goal probability p ∈ [0, 1] (iid).
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Simplest model - Tree with Single Goal Level
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Simplest model - Tree with Single Goal Level

Our simplest model assumes a complete tree with:

D = 3, g = 2, p = 1/3

A max search depth D ∈ N,

A goal level g ∈ {0, . . . , D}
Nodes on level g are goals with
goal probability p ∈ [0, 1] (iid).
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BFS Runtime
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Expected BFS search time is

E[tBFS] = 2g − 1 + 1/p

Proof. The position Y of the first
goal is geometrically distributed with
E[Y ] = 1/p.
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DFS Runtime
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Expected DFS search time is

E[tDFS] ≈ (1/p− 1)︸ ︷︷ ︸
number of
subtrees

2D−g+1︸ ︷︷ ︸
size of
subtrees

Proof. There are (1/p− 1) red mini-
trees of size ≈ 2D−g+1. It turns out
that the blue nodes do not substan-
tially affect the count in most cases.
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Expected BFS and DFS search time as a function of goal depth in a tree
of depth D = 15, and goal probability p = 0.07.
The initially high expectation of BFS is because likely no goal exists  
whole tree searched (artefact of model).
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BFS vs. DFS

Combining the runtime estimates yields an elegant decision boundary for
when BFS is better:

E[tBFS]− E[tDFS] < 0︸ ︷︷ ︸
BFS Better

⇐⇒ g < D/2 + γ

where γ = log2(
1−p
p )/2 is inversely related to p

(γ small when p not very close to 0 or 1).

Observations:

BFS is better when goal near start node (expected)

DFS benefits when p is large

Tom Everitt, Marcus Hutter (ANU) BFS vs. DFS September 3, 2015 13 / 21



BFS vs. DFS
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Plot of BFS vs. DFS decision boundary with goal level g and goal
probability p = 0.07. The decision boundary gets 79% of the winners
correct.

Time to generalise.
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Tree with Multiple Goal Levels

As before, assume a complete tree with:

D = 3,

A maximum search depth D

Instead of goal level g and goal
probability p:
Use a goal probability vector
p = [p0, . . . , pD]. Nodes on
level k are goals with iid
probability pk.

This is arguably much more realistic :) ways to estimate the goal
probabilities is an important future question.

Both BFS and DFS analysis can be carried back to the single goal
level case with some hacks.
BFS analysis is fairly straightforward
DFS requires approximation of geometric distribution with
exponential distribution
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Decision Boundary
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The goal probabilities are highest at a peak level µ, and decays around it
depending on σ2.
Some takeaways:

BFS still likes goals close to the root

BFS likes larger spread more than DFS does (increases probability of
really easy goal)
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General graphs
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We capture the various topological properties of graphs in a collection of
parameters called the descendant counter.

Similarly to before, we get approximate expressions for BFS and DFS
expected runtime given a goal probability vector.

We analytically derive the descendant counter for two concrete grammar
problems (it could potentially be inferred empirically in other cases).
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One observation is that DFS can spend an even greater fraction of the
initial search time far away from the root.
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So BFS will be better for a wider range of goal levels in graph search than
in tree search.
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Experimental results

We randomly generate graphs according to a wide range of parameter
settings.

BFS always accurate.

DFS in trees:
Usually within 10% error; in some corner cases up to 50% error.

DFS in binary grammar problem (non-tree graph):
Mostly within 20% error; 35% at worst.

More detailed results in paper.
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Conclusions

With our model of goal distribution, we can predict expected search time
of BFS and DFS (instead of only worst-case), given goal probabilities for
all distances.

Further work needed to automatically infer parameters.

This theoretical understanding can hopefully be useful when:

Choosing search method

Constructing meta-heuristics

Analysing performance of more complex search algorithms (for
example, A* is a generalisation of BFS, and Beam Search is a
generalisation of DFS).

Choosing graph representation of search problem.
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