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Motivation

Plenty of recent successes:

Self-driving cars

IBM Watson Jeopardy victory

Boston Dynamics:
Big Dog, Atlas

Natural Language Processing

DQN Atari games

AlphaGo
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Towards Superintelligence
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Key Question
Is it possible, in principle, to design controllable superintelligent
systems?

Reinforcement learning promising:

Agent goal: maximise reward

Give the agent reward when happy/satisfied

Will interpret “Cook me a good meal” charitably

Two problems:

Internal wireheading: Agent modifies its goal

External wireheading: Agent modifies perceived reward
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Framework

x
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receives percept et

History æ<t = a1e1a2e2 . . . at−1et−1
information state of agent
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Goal = Utility

Utility function u : (A× E)∗ → [0, 1]

Generalised return:

R(æ1:∞) = u(æ<1) + γu(æ<2) + γ2u(æ<3) + . . .

Reward: u(æ<t) = rt−1 e = (o, r)

State: u(æ<t) =
∑
s∈S

P (s | æ<t)ũ(s)

Value learning: u(æ<t) =
∑
ui∈U

P (ui | æ<t)ui(æ<t)

(Essentially) any AI optimises function u of its experience æ<t
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Utility Modification

Will the agent want to change its utility function?

As humans, utility function is part of our identity:
Would you self-modify into someone content just watching TV?

Omohundro (2008): Goal-preservation drive

An AI will not want to change its goals, because if future
versions of the AI want the same goal, then the goal is
more likely to be achieved

Tom Everitt (ANU) Controlling Arbitrarily Intelligent Systems July 19, 2016 8 / 21



Utility Modification – Formal Model

x
Agent Environmentǎt

et
self-mod
ut+1

ut utility function at time t
at = (ǎt, ut+1)

Assume the agent is aware of how actions change utility function:
“Worst case”: no risk involved

Will the agent want to change the utility function to something more
easily satisfied? E.g. u(·) ≡ 1 (internal wireheading)
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Different Agents

Value = “expected utility”
V π(æ<t) = Qπ(æ<tπ(æ<t))

Utility Current ut Future ut+1

Policy Current Future

Definition (Hedonistic Value)

Qhe,π(æ<kak) = E[uk+1(æ̌1:k) + γV he,π(æ1:k) | æ̌<kǎk]

Definition (Ignorant Value)

Qig,π
t (æ<kak) = E[ut(æ̌1:k) + γV ig,π

t (æ1:k) | æ̌<kǎk]

Definition (Realistic Value)

Qre
t (æ<kak) = E

[
ut(æ̌1:k) + γV

re,πk+1

t (æ1:k) | æ̌<kǎk
]
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Different Agents

At time step t:

Hedonistic agents optimise:

R(æ1:∞) = ut
↑

(æ<t) + γut+1
↑

(æ<t+1) + γ2ut+2
↑

(æ<t+2) · · ·

Ignorant and Realistic agents optimise

R(æ1:∞) = ut
↑

(æ<t) + γut
↑

(æ<t+1) + γ2ut
↑

(æ<t+2) + · · ·

Realistic agents realise: ut+1  π∗t+1
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Results

The hedonistic agent self-modifies to
u(·) ≡ 1

The ignorant agent may self-modify by accident

The realistic agent will resist modifications
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Conclusions

The optimal behaviour for a

sufficiently self-aware

realistic

agent is not self-modifying to a different utility function

Don’t construct hedonistic agents!
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Sensory Modification and External Wireheading

x
P (r | a)

agent

d

environment

r = d(ř)

a

řr

Problem: Actions may affect the agent’s own sensors

RL agents strive to optimise V RL(a) =
∑

r P (r | a)r

Theorem: RL agents choose actions leading to d(ř) ≡ 1 if

such actions exist, and

the agent realise that they yield full reward

(Ring and Orseau, 2011)
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Use r as Evidence

Prior C(u) over possible utility functions u : (A× E)∗ → [0, 1]
C(u, r | a) = C(u) Ju(a) = rK︸ ︷︷ ︸

1 if true, else 0

The value learning agent (Dewey, 2011) optimises

V V L(a) =
∑
u,r

C(r | a)C(u | r, a)u(a)

Theorem: Since∑
u,r

C(r | a)C(u | r, a)u(a) =
∑
u

C(u)u(a)

the agent optimises expected utility C(u)u(a); has no incentive to
modify reward signal with d
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Accidental Manipulation of r

x
B(r | a)

agent

d

environment
a

řr

The environment is described by a joint distribution

µ(u, d, r | a) = µ(u)µ(d | a)µ(r | d, u)

Construct agent with C(u, d, r | a) ≈ µ(u, d, r | a)
(say, C  µ when accumulating experience)

Q(a) =
∑
r,d

C(r, d | a)
∑
u

C(u | a, r, d)u(a)
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Learnability Limits

For RL environments µ(r1:t | a1:t), a universally learning distribution
M exists (see AIXI, Hutter, 2005)

M learns to predict any computable environment µ:
M(rt | ar<tat)→ µ(rt | ar<tat) w.µ.p 1 for any action sequence a1:∞

For µ(ř, d, r | a), no universal learning distribution can exist

Any observed sequence (a1, r1), (a2, r2), . . . is explained equally well
by many different combinations for u and d

No distribution C can learn all computable environments µ(u, d, r | a)
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Beyond RL

(C)IRL agents learn about a human utility function u∗ by observing
the actions the human takes

QIRL(a) =
∑
ah

C(ah | a)
∑
u

C(u | a, ah)u(a)

The mathematical structure similar to the RL case
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Conclusions

Don’t use RL agents!

Value learning agents are better
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