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Abstract

The field of artificial intelligence has recently experienced a number of breakthroughs

thanks to progress in deep learning and reinforcement learning. Computer algorithms

now outperform humans at Go, Jeopardy, image classification, and lip reading, and are

becoming very competent at driving cars and interpreting natural language. The rapid

development has led many to conjecture that artificial intelligence with greater-than-

human ability on a wide range of tasks may not be far. This in turn raises concerns

whether we know how to control such systems, in case we were to successfully build

them.

Indeed, if humanity would find itself in conflict with a system of much greater intelli-

gence than itself, then human society would likely lose. One way to make sure we avoid

such a conflict is to ensure that any future AI system with potentially greater-than-

human-intelligence has goals that are aligned with the goals of the rest of humanity. For

example, it should not wish to kill humans or steal their resources.

The main focus of this thesis will therefore be goal alignment, i.e. how to design artifi-

cially intelligent agents with goals coinciding with the goals of their designers. Focus will

mainly be directed towards variants of reinforcement learning, as reinforcement learning

currently seems to be the most promising path towards powerful artificial intelligence.

We identify and categorize goal misalignment problems in reinforcement learning agents

as designed today, and give examples of how these agents may cause catastrophes in

the future. We also suggest a number of reasonably modest modifications that can be

used to avoid or mitigate each identified misalignment problem. Finally, we also study

various choices of decision algorithms, and conditions for when a powerful reinforcement

learning system will permit us to shut it down.

The central conclusion is that while reinforcement learning systems as designed today

are inherently unsafe to scale to human levels of intelligence, there are ways to potentially

address many of these issues without straying too far from the currently so successful

reinforcement learning paradigm. Much work remains in turning the high-level proposals

suggested in this thesis into practical algorithms, however.

Central claim: There are a number of theoretically valid, partial solutions to the prob-

lem of keeping artificial general intelligence both safe and useful.
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Part I.

Background

1





To educate a machine in mind and not in

morals is to educate a menace to society.

Theodore Roosevelt (paraphrased)

1. Introduction1

Artificial Intelligence. An artificial intelligence (AI) program may broadly be defined

as a computer program that automatically finds ways to achieve goals. For example, an

AI chess program finds moves for achieving the goal of checkmating the opponent. The

moves have not been explicitly defined by the programmer – instead the program finds

them by “weighing” the pros and cons of different strategies. An AI question-answering

system automatically generates the answer to a query by searching a knowledge base.

A self-driving car finds a way to control throttle, break, and steering, in order to get to

its goal destination.

An important distinction between different AI systems is generality. Most present-

day AIs can only solve narrow sets of tasks in restricted environments. For example,

most chess programs can only play chess, and most question answering systems can only

answer specific type of queries from a particular kind of database. This is in contrast to

humans, who can learn to perform a wide range of cognitive tasks.

However, a trend towards greater generality can be observed in AI systems. While

most self-driving car algorithms would not perform well on tasks other than driving a car,

driving a car is already a rather general task. It involves acting in an environment with

varying weather, traffic, and lightning conditions, using multiple sources of perception.

While most board-game AIs have traditionally been tailored towards a specific type of

board game, AlphaZero is a single algorithm that achieves super human performance

in Go, Chess, and Shogi (Silver, Hubert, et al., 2017). Another popular benchmark is

video games. Here again a single algorithm called DQN recently managed to outperform

humans on a majority of the ATARI games (Hessel et al., 2017; Mnih, Kavukcuoglu,

et al., 2015).

Extrapolating this trend towards greater generality and intelligence, we may expect AI

systems to eventually surpass humans on both these metrics. Such systems are sometimes

called artificial general intelligences (AGIs). Indeed, many expect the creation of the first

human-level AGI to occur within the next few decades, and greatly superhuman AGI

soon after (Bostrom, 2014; and Section 2.2 below).

1 This introduction shares some material with Everitt and Hutter (submitted 2018) and Everitt, Lea,
et al. (2018).
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1. Introduction

Controlling AGI. A superhuman AGI is a system that outperforms humans on most

cognitive tasks. In order to control it, humans would need to control a system more

intelligent than themselves. This may be nearly impossible if the difference in intelligence

is large, and the AGI is trying to escape control.

Humans have one key advantage: As the designers of the system, we get to decide

the AGI’s goals, and the way the AGI strives to achieve its goals.2 This may allow us

design AGIs whose goals are aligned with ours, and that pursue them in a responsible

way. Increased intelligence in an AGI is not a threat as long as the AGI only strives to

help us achieve our own goals.

On a high level, this goal alignment problem is challenging for at least two reasons:

Specificity of human values, and Goodhart’s law. First, human values are rather specific.

For example, most humans prefer futures with happy sentient beings over futures with

much suffering or no sentient beings at all. But even futures where happiness greatly

outweighs suffering can still be undesirable. Yudkowsky (2009) gives an example where

a happy, sentient experience is set to repeat everywhere until the heat-death of the uni-

verse. Most people find it repulsive, because it lacks important values such as variation

and growth. However, listing all important values is not an easy task, which makes

it hard to define a goal for an AGI that matches our human values even if the goal is

optimized by a highly intelligent system. In this way, an AGI resembles a fairy-tale

genie who grants you a wish, but interprets it over-literally (Wiener, 1960). In most

fairy tales, the hero eventually wants his wish undone.

A second reason why alignment is hard is Goodhart’s law (Goodhart, 1975, 1984),

which roughly states that:

“When a measure becomes a target, it ceases to be a good measure.” (Strath-

ern, 1997).

In the context of AGI, it means that if we give our system a proxy-measure for how

well it is satisfying a goal, then the proxy is likely to cease being a good measure once

the AGI starts optimizing for it. An oft-mentioned example is that of a reinforcement

learning (RL) agent that uses a reward signal as goal proxy. In most circumstances, the

reward may correspond well to the agent’s performance. But an AGI optimizing the

reward may find a way to short circuit the reward signal, obtaining maximum reward

for behaviors considered undesirable by its human designers (Ring and Orseau, 2011).

This is a rather extreme instance of Goodhart’s law. Section 4.5 of this thesis is devoted

to various aspects of the goal alignment problem.

2The goal does not need to be a long-term goal (Armstrong, Sandberg, et al., 2012; Christiano, 2015).
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Other aspects. In addition to goal alignment, some further properties may also con-

tribute to making an AGI safe. We may for example ask that the AI system is corrigible

(Soares, Fallenstein, et al., 2015) in the sense that it lets us correct mistakes in its source

that we have made while designing it, and that it lets us shut it down if we judge that

to be the best option. Unfortunately, many AI designs give the agent an incentive to

prevent corrections and shut down. This, of course, is a type of misalignment. There has

been some debate about whether corrigibility should be treated as a property separate

from goal alignment (Carey, 2018), or be made to follow from a more general approach

to goal alignment (Hadfield-Menell, Dragan, et al., 2017; Milli et al., 2017). We will

study some aspects of corrigibility in Chapter 11.

The way an AGI makes decisions is also important. Even if its goals are aligned, it

may still do the wrong thing if it follows the wrong decision principle. While expected

utility maximization is a principle that many agree on, there are subtleties in how the

expectation should be computed when the agent is part of the environment that it

is interacting with. Some aspects of decision theory will be considered in Section 6.4

and Chapter 10.

Why study AGI before it exists? Why study the safety of AGI before it exists, and

before we even know whether it will ever exist? There are at least two types of reasons for

this. The first is pragmatic. If AGI is created, and we do not know how to control it, then

the outcome could be catastrophic (Bostrom, 2014). It is customary to take precautions

not only against catastrophes we know will happen, but also against catastrophes that

have only a slight chance of occurring (for example, a city may decide to build earth-

quake safe buildings, even if the probability of an earth quake occurring is fairly low). As

discussed in Section 2.2 below, many believe that AGI has more than a small probability

of occurring reasonably soon, and it can potentially cause very significant catastrophes.

The second reason is scientific. Potential future AGIs are theoretically interesting

objects, and the question of how a human can control machines more intelligent than

him or herself is philosophically stimulating.

Main contributions. The main contributions of this thesis are:

• A formal definition of alignment (Section 5.4).

• A method for detecting misalignment problems in RL setups (Section 5.5).

• Formalization and categorization of misalignment problems in three different RL

setups (Chapters 6 to 8).
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1. Introduction

• Descriptions of a number of high-level tools for managing misalignment, as well as

identification of which tools solve which type of misalignment problem (Chapters 6

to 9).

• Extensions of the two standard physicalistic decision theories (causal and evidential

decision theory) to the sequential case (Section 10.2).

• A characterization of the robot’s best action in the off-switch game for arbitrary

belief distribution and irrationality assumptions (Chapter 11).

Outline. The thesis is divided into three parts. The first part describes the relevant

background:

Chapter 2: A growing literature is slowly starting to make progress on how to think

about future AGIs and how to make them safe. This chapter provides a

literature review for this emerging field.

Chapter 3: In the early days of AI research, a wide range of topics were considered.

The last two decades have seen AI research converge on rational agents

that act to achieve some goal (Russell and Norvig, 2010). Chapter 3 gives

a gentle introduction to universal artificial intelligence (UAI), which is a

formal theory for rational agents making only very weak assumptions

about the environment they are in.

Chapter 4: Causal graphs elegantly combine the power of formal mathematics and

probability theory with intuitive visualizations. They will be used ex-

tensively in almost every subsequent chapter. This chapter describes the

basics of causal graphs, as well as some of our own notation.

The second part contains my work related to the alignment problem of rational agents:

Chapter 5: As mentioned, goal alignment is a central concern for AGI safety. In order

to study alignment formally, Chapter 5 extends the UAI framework from

Chapter 3 in several ways, formally defines alignment, and proposes a

method for detecting misalignment in RL setups.

Chapters 6 to 8: Different real-world applications of RL differ in whether the reward is

provided by a preprogrammed reward function, a human, or by an inter-

actively learned reward function. The distinction gives rise to important

differences in alignment problems. Chapters 6 to 8 study misalignment
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problems and ways they can be avoided or reduced in the three different

RL setups.

Chapter 9: One source of misalignment is the AGI corrupting its reward signal.

Chapter 9 formalizes reward corruption in a Markov decision process,

and derives several positive and negative results for how and when the

problem can be mitigated.

The third part contains chapters on decision theory and corrigibility:

Chapter 10: The questions of how to calculate expected utility and make decisions

become surprisingly complex when the agent is part of the environment

that it interacts with. Causal and evidential decision theory are the two

most popular decision theories among modern philosophers. This chapter

extends them to the sequential case, where multiple actions and observa-

tions are interleaved.

Chapter 11: Being able to shut down an AGI is an important safety feature. However,

the agent shutting down after receiving a request to do so may not always

represent the human’s best interests. This chapter deepens the analysis

of a previously proposed model of this problem.

Finally, Chapter 12 concludes with summary and discussion. The reader may also want

to occasionally consult the list of notation in Appendix A at the end of this thesis.

In some chapters, semi-formal statements are made in place of fully formal theorems.

This is to improve the flow of the text, and to avoid readers getting stuck on inessential

details. These statements are always backed by fully formal theorems that are either

referenced or found in appendices at the end of the chapter.
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“Within thirty years, we will have the technological

means to create superhuman intelligence.

Shortly after, the human era will be ended.”

Vernor Vinge (1993)

2. AGI Safety Literature Review1

This chapter reviews the literature relevant to AGI safety. An extensive survey of the

AGI safety literature was previously made by Sotala and Yampolskiy (2014). Since

then, the field has grown significantly. More up-to-date references are provided by this

chapter, and by a number of recent research agendas and problem collections (Amodei,

Olah, et al., 2016; Leike, Martic, et al., 2017; Russell, Dewey, et al., 2016; Soares and

Fallenstein, 2017; Stoica et al., 2017; Taylor et al., 2016). A recent inventory of AGI

projects and their attitudes towards ethics and safety also contributes to an overview of

AGI safety research and attitudes (Baum, 2017a).

This thesis is structured as follows. Progress on how to think about yet-to-be-designed

future AGI’s is described in the first section (Section 2.1). Based partly on this under-

standing, we next survey predictions for when AGI will be created and what will happen

after its creation (Section 2.2). We list and discuss identified AGI safety problems (Sec-

tion 2.3), as well as proposals for solving or mitigating them (Section 2.4). Finally, we

review the current public policy on AGI safety issues (Section 2.5), before making some

concluding remarks (Section 2.6).

2.1. Understanding AGI

A major challenge for AGI safety research is to find the right conceptual models for

plausible AGIs. This is especially challenging since we can only guess at the technology,

algorithms, and structure that will be used. Indeed, even if we had the blueprint of an

AGI system, understanding and predicting its behavior might still be hard: Both its de-

sign and its behavior could be highly complex. Nonetheless, several abstract observations

and predictions are possible to make already at this stage.

2.1.1. Defining Intelligence

Legg and Hutter (2007c) propose a formal definition of intelligence based on algorithmic

information theory and the UAI framework (Chapter 3; Hutter, 2005). They compare

1This chapter is based on Tom Everitt, Gary Lea, and Marcus Hutter (2018). “AGI Safety Literature
Review”. In: International Joint Conference on Artificial Intelligence (IJCAI).
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it to a large number of previously suggested definitions (Legg and Hutter, 2007a). In-

formally, their definition states that:

“Intelligence measures an agent’s ability to achieve goals in a wide range of

environments.”

The definition is non-anthropomorphic, meaning that it can be applied equally to humans

and artificial agents. All present-day AIs are less intelligent than humans according to

this definition, as each AI is unable to achieve goals beyond a rather narrow domain.

These domains can be for example ATARI environments (Hessel et al., 2017; Mnih,

Badia, et al., 2016; Mnih, Kavukcuoglu, et al., 2015), board-games (Silver, Huang, et

al., 2016; Silver, Hubert, et al., 2017; Silver, Schrittwieser, et al., 2017), car-driving

(Bojarski et al., 2016; Huval et al., 2015). However, as discussed in Chapter 1, a trend

towards greater generality can be observed.

Following the Legg-Hutter definition, we may expect that a future, super-human AGI

will be able to achieve more goals in a wider range of environments than humans. The

most intelligent agent according to this definition is AIXI, which has been studied both

mathematically and empirically; see Chapter 3, Everitt and Hutter (2018), Hutter (2005,

2012b), and Leike (2016) for surveys. Most of this thesis is based around the UAI

framework. Other safety work in the UAI framework is reviewed mostly in Section 2.4.

The Legg-Hutter intelligence definition measures what matters for control. The more

intelligent an agent is, the more control it will have over aspects of the environment

relating to its goals. If two agents with significantly different Legg-Hutter intelligence

have conflicting goals in a shared environment, then in many environments we may

expect the more intelligent of the two to succeed and the less intelligent fail. This points

to the risks with increasingly intelligent AGIs: If their goals are not aligned with ours,

then there will likely be a point where their goals will be achieved to the loss of ours

(Russell, 2016).

2.1.2. Orthogonality

Bostrom’s (2012, 2014) orthogonality thesis states that essentially any level of intelli-

gence is compatible with any type of goal. Thus it does not follow, as is sometimes

believed, that a highly intelligent AGI will realize that a simplistic goal such as creating

paperclips or computing decimals of π is dumb, and that it should pursue something

more worthwhile such as art or human happiness. Relatedly, Hume (1738) argued that

reason is the slave of passion, and that a passion can never rationally be derived. In

other words, an AGI will employ its intelligence to achieve its goals, rather than conclude

10



2.1. Understanding AGI

that its goals are pointless. Further, if we want an AGI to pursue goals that we approve

of, we better make sure that we design the AGI to pursue such goals: Beneficial goals

will not emerge automatically as the system gets smarter.

2.1.3. Convergent Instrumental Goals

The orthogonality thesis holds for the end goals of the system. In stark contrast, the

instrumental goals will often coincide for many agents and end goals (Bostrom, 2012;

Omohundro, 2007, 2008). Common instrumental goals include:

• Self-improvement: By improving itself, the agent becomes better able at achieving

its end goal.

• Goal-preservation and self-preservation: By ensuring that future versions of itself

pursues the same goals, the end goal is more likely to be achieved.

• Resource acquisition: With more resources, the agent will be better able at achieve

the end goals.

Exceptions exists, especially in game-theoretic situations where the actions of other

agents may depend on the agent’s goals or other properties (Lavictoire et al., 2014).

For example, an agent may want to change its goals so that it always chooses to honor

contracts. This may make it easier for the agent to make deals with other agents. The

sequential toxoplasmosis problem can also be seen as a case of this (Example 10.5 in

Chapter 10).

2.1.4. Formalizing AGI

Bayesian, history-based agents have been used to formalize AGI in the UAI frame-

work (Chapter 3; Hutter, 2005). Extensions of this framework have been developed

for studying multi-agent interaction (Leike, Taylor, et al., 2016), space-time embedded-

ness (Orseau and Ring, 2012), self-modification (Everitt, Filan, et al., 2016; Orseau

and Ring, 2011), observation modification (Ring and Orseau, 2011), self-duplication

(Orseau, 2014a,b), knowledge seeking (Orseau, 2014c), decision theory (Everitt, Leike,

et al., 2015), and others (Everitt and Hutter, 2018).

Some aspects of reasoning are swept under the rug by AIXI and Bayesian optimality.

Importantly, probability theory assumes that agents know all the logical consequences

of their beliefs (Gaifman, 2004). An impressive model of logical non-omniscience has

recently been developed by Garrabrant et al. (2016, 2017). Notably, Garrabrant’s theory

avoids Gödelian obstacles for agents reasoning about improved versions of themselves
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(Fallenstein and Soares, 2014). There is also hope that it can provide the foundation for

a decision theory for logically uncertain events, such as how to bet on the 50th digit of

π before calculating it.

2.1.5. Alternate Views

Eric Drexler (private communication, 2017) argues that an AGI does not need to be

an agent that plans to achieve a goal. An increasingly automatized AI research and

development process where more and more of AI development is being performed by AI

tools can become super-humanly intelligent without having any agent subcomponent.

Avoiding to implement goal-driven agents that make long-term plans may avoid some

safety concerns. However, Bostrom (2014, Ch. 10) worries that even tool AIs that are

not explicitly agents may still obtain some agent-like properties as their intelligence

increases. Constructing an agent where the goals can be set explicitly may therefore be

a safer option, though Drexler (2015) has an idea for how to keep AIs specialized. A

drive for creating agent AIs rather than tool AIs can also arise from economic incentives

(Gwern, 2016).

Relatedly, Weinbaum and Veitas (2016) criticize the (rational) agent assumption un-

derpinning most AGI theory.

2.2. Predicting AGI Development

Based on historical observations of economical and technological progress, and on the

growing understanding of potential future AGIs described in Section 2.1, predictions

have been made both for when the first AGI will be created, and what will happen once

it has been created.

2.2.1. When Will AGI Arrive?

There is an ongoing and somewhat heated debate about when we can expect AGI to

be created, and whether AGI is possible at all or will ever be created. For example, by

extrapolating various technology trends until we can emulate a human brain, Kurzweil

(2005) argues that AGI will be created around 2029. Chalmers (2010) makes a more

careful philosophical analysis of the brain-emulation argument for AI, and shows that it

defeats and/or avoids counter arguments made by Dreyfus (1972), Lucas (1961), Penrose

(1994), and Searle (1980). Chalmers is less optimistic about the timing of AGI, and only

predicts that it will happen within this century.
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Surveys of when AI researchers estimate that human-level AGI will be created have

been made by Baum et al. (2011), V. C. Müller and Bostrom (2016), and Grace et al.

(2017). Baum et al. (2011) asked 21 attendees at the 2009 Artificial General Intelligence

conference, and found a median of 2045 for superhuman AGI. V. C. Müller and Bostrom

(2016) made a bigger survey of 550 people from the 2012 Philosophy and Theory of AI

(PT-AI) and AGI conferences, the Greek Society for Artificial Intelligence (EETN), as

well as the top 100 most cited authors in artificial intelligence. The medians for the

various groups all fell between 2040 and 2050. Grace et al. (2017) got 352 responses

from NIPS and ICML 2015 presenters on the slightly different question of when AGI

will accomplish all tasks better than human workers, and got a median of 2061. In-

terestingly, Asian respondents predicted AGI more than 30 years sooner than North

American respondents, with Europeans in the middle slightly closer to the Asians than

to the North Americans. It is also worth noting that estimates vary widely, from never

to just a few years into the future.

There are also other indicators of when AGI might arrive. Algorithmic progress have

been tracked by Grace (2013), Eckersley and Nasser (2018), and AI Impacts (2018b), and

the costs of computing have been tracked by AI Impacts (2018a). A new MIT course on

AGI shows that the idea of AGI approaching is becoming more mainstream (Fridman,

2018). Stanford has a course on AI safety (Sadigh, 2017). Jilk (2017) argues that an AGI

must have a conceptual-linguistic faculty in order to be able to access human knowledge

or interact effectively with the world, making a conceptual-linguistic faculty a necessary

requirement for AGI. Jilk further argues that a conceptual-linguistic faculty is likely to

be a strong indicator of AGI being near, and suggests ways in which we may test whether

a system has a conceptual-linguistic ability.

2.2.2. Will AGI Lead to a Technological Singularity?

As explained in Section 2.1.3, one of the instrumental goals of almost any AGI will be self-

improvement. The greater the improvement, the likelier the end goals will be achieved.

This can lead to recursive self-improvement, where a self-upgraded AGI is better able

to find yet additional upgrades, and so on. If the pace of this process increases, we

may see an intelligence explosion once a critical level of self-improvement capability has

been reached (Bostrom, 2014; Good, 1966; Hutter, 2012a; Kurzweil, 2005; Vinge, 1993;

Yudkowsky, 2008b). Already John von Neumann has been quoted calling this intelligence

explosion a singularity (Ulam, 1958). Singularity should here not be understood in its

strict mathematical sense, but more loosely as a point where our models break.

Some counter arguments to the singularity have been structured by Walsh (2016),
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who argues that an intelligence explosion is far from inevitable:

• Intelligence measurement: The singularity predicts an increasingly rapid devel-

opment of intelligence. However, it is not quite clear how we should measure

intelligence (Hutter, 2012a). A rate of growth that looks fast or exponential ac-

cording to one type of measurement, may look ordinary or linear according to

another measurement (say, the log-scale).

• Fast thinking dog: No matter how much we increase the speed at which a dog

thinks, the dog will never beat a decent human at chess. Thus, even if computers

keep getting faster, this alone does not entail their ever becoming smarter than

humans.

• Anthropocentric: Proponents of the singularity often believe that somewhere

around the human level of intelligence is a critical threshold, after which we may

see quick recursive self-improvement. Why should the human level be special?

• Meta-intelligence, diminishing returns, limits of intelligence, computational com-

plexity: It may be hard to do self-improvement or be much smarter than humans

due to a variety of reasons, such as a fundamental (physical) upper bound on

intelligence or difficulty of developing machine learning algorithms.

These arguments are far from conclusive, however. In Life 3.0, Tegmark (2017) argues

that AGI constitutes a third stage of life. In the first stage, both hardware and software is

evolved (e.g. in Bacteria). In the second stage, the hardware is evolved but the software

is designed. The prime example is a human child who goes to school and improves

her knowledge and mental algorithms (i.e. her software). In the third stage of life,

both the software and hardware is designed, as in an AGI. This may give unprecedented

opportunities for quick development, countering the anthropocentric argument by Walsh.

In relation to the fast thinking dog and the limits of intelligence arguments, Bostrom

(2014) argues that an AGI may think up to a million times faster than a human. This

would allow it to do more than a millennium of mental work in a day. Such a speed

difference would make it very hard for humans to control the AGI. Powerful mental

representations may also allow an AGI to quickly supersede human intelligence in quality

Sotala (2017). Yampolskiy (2017) also replies to Walsh’s arguments.

Kurzweil’s (2005) empirical case for the singularity has been criticized for lack of

scientific rigor (Modis, 2006). Modis (2002) argues that a logistic function fits the data

better than an exponential function, and that logistic extrapolation yields that the rate

of complexity growth in the universe should have peaked around 1990.
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In conclusion, there is little consensus on whether and when AGI will be created, and

what will happen after its creation. Anything else would be highly surprising, given

that no similar event have previously occurred. Nonetheless, AGI being created within

the next few decades and quickly superseding human intelligence seems like a distinct

possibility.

2.2.3. Risks Caused by AGI

A technological singularity induced by an AGI may lead to existential risks such as a pa-

perclip maximizer annihilating life in pursuit of resources (Bostrom, 2013, 2014), as well

as risks of substantial suffering without extinction (Sotala and Gloor, 2017). However,

even if AGI does not lead to a technological singularity, it may still cause substantial

problems, for example through (enabling greater degrees of) social manipulation, new

types of warfare, or shifts in power dynamics (Sotala, 2018). Categorizations of possible

scenarios have been proposed by Turchin (2018) and Yampolskiy (2016).

2.3. Problems with AGI

Several authors and organizations have published research agendas that identify potential

problems with AGI. Russell, Dewey, et al. (2016) and the Future of Life Institute (FLI)

take the broadest view, covering societal and technical challenges in both the near and

the long term future. Soares and Fallenstein (2014, 2017) at the Machine Intelligence

Research Institute (MIRI) focus on the mathematical foundations for AGI, including

decision theory and logical non-omniscience. Several subsequent agendas and problem

collections try to bring the sometimes “lofty” AGI problems down to concrete machine

learning problems: Amodei, Olah, et al. (2016) at OpenAI et al., Leike, Martic, et al.

(2017) at DeepMind, and Taylor et al. (2016) also at MIRI. In the agenda by Stoica et al.

(2017) at UC Berkeley, the connection to AGI has all but vanished. For brevity, we will

refer to the agendas by the organization of the first author, with MIRI-AF the agent

foundations agenda by Soares and Fallenstein (2014, 2017) and MIRI-ML the machine

learning agenda by (Taylor et al., 2016). Figure 2.1 shows some connections between

the agendas. Figure 2.1 also makes connections to research done by other prominent

AGI safety institutions Oxford Future of Humanity Institute (FHI), Australian National

University (ANU), and Center for Human-Compatible AI (CHAI).

Some clusters of problems appear in multiple research agendas:

• Value specification: How do we get an AGI to work towards the right goals? MIRI

calls this value specification. Bostrom (2014) discusses this problem at length,
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MIRI-AF
Value specification

Error-Tolerance
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FLI
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Control

Verification
Security

ANU
Reward/data corruption

Corrigibility
Self-modification
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CHAI
Reward learning

Corrigibility

UC Berkeley
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Continual learning
Robust decisions

Explainable decisions
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FHI
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MIRI-ML
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Informed oversight
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Impact measures
Mild optimization
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DeepMind
Absent supervisor

Interruptibility
Reward gaming
Self-modification

Negative side effects
Safe exploration

Distributional shift
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OpenAI et al.
Safe exploration

Reward corruption
Scalable oversight

Distributional shift
Negative side effects

. .

Figure 2.1.: Connections between problems stated in different AGI safety research agen-
das (for ANU, CHAI, and FHI, the agendas are inferred from their recent
publications).

arguing that it is much harder than one might naively think. Davis (2015) criti-

cizes Bostrom’s argument, and Bensinger (2015) defends Bostrom against Davis’

criticism. Reward corruption, reward gaming, and negative side effects are sub-

problems of value specification highlighted in the DeepMind and OpenAI agendas.

• Reliability: How can we make an agent that keeps pursuing the goals we have

designed it with? This is called highly reliable agent design by MIRI, involving

decision theory and logical omniscience. DeepMind considers the self-modification

subproblem.

• Corrigibility: If we get something wrong in the design or construction of an agent,

will the agent cooperate in us trying to fix it? This is called error-tolerant design

by MIRI-AF and corrigibility by Soares, Fallenstein, et al. (2015). The problem is

connected to safe interruptibility as considered by DeepMind.

• Security: How to design AGIs that are robust to adversaries and adversarial en-

vironments? This involves building sandboxed AGI protected from adversaries

(Berkeley), and agents that are robust to adversarial inputs (Berkeley, DeepMind).

• Safe learning: AGIs should avoid making fatal mistakes during the learning

phase. Subproblems include safe exploration and distributional shift (DeepMind,

OpenAI), and continual learning (Berkeley).

• Intelligibility: How can we build agent’s whose decisions we can understand? Ex-

plainable decisions (Berkeley); informed oversight (MIRI). DeepMind is also work-

ing on these issues, see Section 2.4.5 below.
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• Societal consequences: AGI will have substantial legal, economic, political, and

military consequences. Only the FLI agenda is broad enough to cover these is-

sues, though many of the mentioned organizations evidently care about the issue

(Brundage et al., 2018; DeepMind, 2017).

There are also a range of less obvious problems, which have received comparatively

less attention:

• Subagents: An AGI may decide to create subagents to help it with its task Orseau

(2014a,b) and Soares, Fallenstein, et al. (2015). These agent’s may for example

be copies of the original agent’s source code running on additional machines. Sub-

agents constitute a safety concern, because even if the original agent is successfully

shut down, these subagents may not get the message. If the subagents in turn cre-

ate subsubagents, they may spread like a viral disease.

• Malign priors: Christiano (2016) argues that the universal prior M (see Sec-

tion 3.4) is malign, as it is likely to be dominated by hypotheses that contain

agents with agendas to influence the user of the prior. While it is unclear to

what extent this type of problem would affect any practical agent, it bears some

semblance to aggressive memes, which do cause problems for human reasoning

(Dennett, 1990).

• Physicalistic decision making: The rational agent framework is pervasive in the

study of artificial intelligence. It typically assumes that a well-delineated entity

interacts with an environment through action and observation channels. This is

not a realistic assumption for physicalistic agents such as robots that are part of

the world they interact with (Soares and Fallenstein, 2014, 2017). Chapter 10

considers this question.

• Indeterminate agency: An artificial intelligence may be copied and distributed,

allowing instances of it to interact with the world in parallel. This can significantly

boost learning, but undermines the concept of a single agent interacting with the

world.

• Meta-cognition: Agents reasoning about their own computational resources and

logically uncertain events can encounter strange paradoxes due to Gödelian lim-

itations (Fallenstein and Soares, 2015; Soares and Fallenstein, 2014, 2017) and

shortcomings of probability theory (Soares and Fallenstein, 2014, 2015a, 2017).

While these problems may seem esoteric, a security mindset (Yudkowsky, 2017) dictates

that we not only protect ourselves from things that can clearly go wrong, but also against

17



2. AGI Safety Literature Review

anything that is not guaranteed to go right. Indeed, unforeseen errors often cause the

biggest risks. For this reason, the biggest safety problem may be one that we have not

thought of yet – not because it would necessarily be hard to solve, but because in our

ignorance we will fail to adopt measures to mitigate the problem.

2.4. Design Ideas for Safe AGI

We next look at some ideas for creating safe AGI. There is not always a clear line

distinguishing ideas for safe AGI from other AI developments. Many works contribute

to both simultaneously.

2.4.1. Value Specification

RL and misalignment. Reinforcement learning (RL) (Sutton and Barto, 1998) is cur-

rently the most promising framework for developing intelligent agents and AGI. Com-

bined with Deep Learning, it has seen some remarkable recent successes, especially in

playing board games (Silver, Huang, et al., 2016; Silver, Hubert, et al., 2017; Silver,

Schrittwieser, et al., 2017) and computer games (Hessel et al., 2017; Mnih, Badia, et al.,

2016; Mnih, Kavukcuoglu, et al., 2015).

Aligning the goals of an RL agent with the goals of its human supervisor comprise

significant challenges, however. These challenges include correct specification of the

reward function, and avoiding that the agent takes shortcuts in optimizing it. Such

shortcuts include the agent corrupting the observations on which the reward function

evaluates performance, modifying the reward function to give more reward, hijacking the

reward signal or the memory location of the reward, and, in the case of an interactively

learned reward function, corrupting the data training the reward function. Chapters 5

to 8 categorize misalignment problems in RL, and suggest a number of techniques for

managing the various sources of misalignment. The rest of this subsection reviews other

work that has been done on designing agents with correctly specified values.

Learning a reward function from actions and preferences. One of the main chal-

lenges in scaling RL to the real world includes designing the reward function. This is

particularly critical for AGI, as a poorly designed reward function would likely lead to a

misaligned agent. As an example of misalignment, Clark and Amodei (2016) found that

their boat racing agent preferred going in circles and crashing into obstacles instead of

winning the race, due to a subtly misspecified reward function. Gwern (2011), Irpan

(2018), and Lehman et al. (2018) have many more examples. Analogous failures in AGIs
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could cause severe catastrophes. The DeepMind problem collection calls this a reward

gaming problem. One potential way around the problem of gameable reward functions

is to let the agent learn the reward function. This lets designers offload some of the

design work to powerful machine learning techniques.

Inverse reinforcement learning (IRL) (Choi and Kim, 2011; Ng and Russell, 2000;

Ziebart et al., 2008) is a framework for learning a reward function from the actions of

an expert, often a human demonstrator. In one famous example, Abbeel et al. (2007)

taught an agent acrobatic helicopter flight by observing the actions of a human pilot.

Impressively, the agent ultimately became better at flying than the pilot it observed.

However, a learned reward function cannot be better than the data that trained it. If all

training happens before the agent is launched into the environment, then the data may

not properly describe situations that the agent reaches far into its lifetime (a so-called

distributional shift problem; Amodei, Olah, et al., 2016). For this reason, interactive

training of the reward function may be preferable, as it allows the training data to

adapt to any new situation the agent may encounter.

Cooperative inverse reinforcement learning (CIRL) is a generalization of IRL that

lets the expert and the agent act simultaneously in the same environment, with the

agent interactively learning the expert’s preferences (Hadfield-Menell, Dragan, et al.,

2016). Among other things, this allows the expert to take demonstrative actions that

are suboptimal according to his or her reward function but more informative to the

agent, without the agent being led to infer an incorrect reward function. The CIRL

framework can be used to build agents that avoid interpreting reward functions overly

literally, thus avoiding some misalignment problems with RL (Hadfield-Menell, Milli,

et al., 2017).

A reward functions can also be learned from a human rating short video clips of

(partial) agent trajectories against each other (Christiano et al., 2017). For example, if

the human consistently rates scenarios where the agent falls off a cliff lower than other

scenarios, then the learned reward function will assign a low reward to falling off a cliff.

Using this technique, a non-expert human can teach an agent complex behaviors that

would have been difficult to directly program a reward function for. Warnell et al. (2017)

use a related approach, needing only 15 minutes of human feedback to teach the agent

the ATARI game Bowling.

On a fundamental level, learning from actions and learning from preferences is not

widely different. Roughly, a choice of action a over action b can be interpreted as a

preference for the future trajectories resulting from action a over the trajectories resulting

from action b. However, a few notable differences can still be observed. First, at least in

Christiano et al.’s (2017) framework, preferences always apply to past events. In contrast,
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an action in the CIRL framework typically gives information about which future events

the human prefers. A drawback is that in order for the action to carry information about

future events, the action must be chosen (somewhat) rationally. Humans do not always

act rationally; indeed, we exhibit several systematic biases (Kahneman, 2011). A naive

application of (C)IRL therefore runs the risk of inferring an incorrect reward function.

To address this, Evans et al. (2016) develop a method for learning the reward function

of agents exhibiting some human-like irrationalities. Without assumptions on the type

of irrationality the expert exhibits, nothing can be learned about the reward function

(Armstrong and Mindermann, 2017). In comparison, learning from preferences seems to

require weaker rationality assumptions on the human’s part, as correctly stating one’s

preferences may be easier than acting rationally.

Yet another approach to learning a reward function is to learn it from stories (Riedl

and Harrison, 2016).

Approval-directed agents. In a series of blog posts, Christiano (2014) suggests that

AGIs should be designed to maximize approval for their actions rather than trying to

reach some goal. He argues that approval-directed systems have many of the same

benefits of goal-directed systems while avoiding some of their worst pitfalls. Christiano

(2015) and Cotra (2018) outline a method for how approval-directed agents can be

chained together in a hierarchy, boosting the accuracy of the approvals of the human at

the top of the chain.

Reward corruption. Reinforcement learning AGIs may hijack their reward signal and

feed themselves maximal reward (Ring and Orseau, 2011). Interestingly, model-based

agents with preprogrammed reward functions are much less prone to this behavior

(Everitt, Filan, et al., 2016; Hibbard, 2012). However, if the reward function is learned

online as discussed above, it opens up the possibility of reward learning corruption. An

AGI may be tempted to influence the data training its reward function so it points to-

wards simple-to-optimize reward functions rather than harder ones (Armstrong, 2015).

Everitt, Krakovna, et al. (2017) (Chapter 9 in this thesis) show that the type of data the

agent receives matter for reward learning corruption. In particular, if the reward data

can be cross-checked between multiple sources, then the reward corruption incentive di-

minishes drastically. Everitt, Krakovna, et al. also evaluate a few different approaches

to reward learning, finding that the human action-data provided in CIRL is much safer

than the reward -data provided in standard RL, but that CIRL is not without worrying

failure modes.
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Side effects. An AGI that becomes overly good at optimizing a goal or reward function

that does not fully capture all human values, may cause significant negative side effects

(Yudkowsky, 2009). The paperclip maximizer that turns the earth and all humans into

paperclips is an often used example (Bostrom, 2014), now available as a highly addictive

computer game (Lantz, 2017). Less extreme examples include companies that optimize

profits and cause pollution and other externalities as negative side effects.

The most serious side effects seem to occur when a target function is optimized in

the extreme (such as turning the earth into paperclips). Quantilization can avoid over-

optimization under some assumptions (Everitt, Krakovna, et al., 2017; Taylor, 2016).

Another more specific method is to “regularize” reward by the impact the policy is

causing (Armstrong and Levinstein, 2017). How to measure impact remains a major

open question, however.

Morality. Both game-theory (Letchford et al., 2008) and machine learning (Conitzer

et al., 2017; Shaw et al., 2018) have been suggested as ways to endow AI systems with a

sense of morality. For example, Kleiman-Weiner et al. (2017) use hierarchical Bayesian

inference to infer a moral theory from actions. However, Bogosian (2017) argues that a

potential problem with these approaches is that the agent becomes over-confident in a

hypothesis – for example due to a model-class that only represents a subset of possible

moral theories. Bogosian therefore argues that it is better to build an agent that remains

uncertain about which moral theory is correct, instead of building an agent with a single

moral theory, be it learned or not. Agents that do not remain uncertain may commit big

atrocities as judged by theories they have discarded, which is undesirable for believers

in the discarded moral theory. In contrast, morally uncertain agents avoid events that

are extremely bad according to any (possible) moral theory.

Virtue ethics has recently re-emerged as a third contender to consequentialist (utilitar-

ian) and deontological (rule-based) ethics. Murray (2017) makes a case for building moral

AI systems based on (Stoic) virtues rather then consequentialist reward-maximization.

Connections to economics. The goal alignment problem has several connections to the

economics literature. It may be seen as an instance of Goodhart’s law (Goodhart, 1975),

which roughly states that any measure of performance ceases to be a good measure once

it is optimized for. Manheim and Garrabrant (2018) categorize instances of Goodhart’s

law. It may also be seen as a principal-agent problem: The connections have been fleshed

out by Hadfield-Menell and Hadfield (2018).
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2.4.2. Reliability

Self-modification. Even if the reward function is correctly specified, an AGI may still

be able to corrupt either the reward function itself or the data feeding it. This can happen

either intentionally if such changes can give the agent more reward, or accidentally as a

side effect of the agent trying to improve itself (Section 2.1.3).

A utility self-preservation argument going back to at least Schmidhuber (2007) and

Omohundro (2008) says that agents should not want to change their utility functions,

as that will reduce the utility generated by their future selves, as measured by the

current utility function. Everitt, Filan, et al. (2016) formalize this argument, showing

that it holds under three non-trivial assumptions: (1) The agent needs to be model-

based, and evaluate future scenarios according to its current utility function; (2) the

agent needs to be able to predict how self-modifications affect its future policy; and

(3) the reward function itself must not endorse self-modifications. In RL (Sutton and

Barto, 1998), model-free agents violate the first assumption, off-policy agents such as

Q-learning violate the second, and the third assumption may fail especially in learned

reward/utility functions (Section 2.4.1). Hibbard (2012) and Orseau and Ring (2011)

also study the utility self-preservation argument.

Decision theory. Functional decision theory consolidates years of research about deci-

sion theory for embedded agents. Yudkowsky and Soares (2017) argue that functional

decision theory overcomes weaknesses of both evidential and causal decision theory.

Chapter 10 of this thesis study sequential extensions of causal and evidential decision

theory.

2.4.3. Corrigibility

By default, agents may resist shutdown and modifications due to the self-preservation

drives discussed in Section 2.1.3. Three rather different approaches have been developed

to counter the self-preservation drives.

Indifference. By adding a term or otherwise modifying the reward function, the agent

can be made indifferent between some choices of future events, for example shutdown

or software corrections (Armstrong, 2017b). For example, this technique can be used to

construct variants of popular RL algorithms that do not learn to prevent interruptions

(Orseau and Armstrong, 2016).
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Ignorance. Another option is to construct agents that behave as if a certain event (such

as shutdown or software modification) was certain not to happen (Everitt, Filan, et al.,

2016). For example, off-policy agents such as Q-learning behave as if they will always act

optimally in the future, thereby effectively disregard the possibility that their software

or policy be changed in the future. Armstrong (2017b) show that ignorance is equivalent

to indifference in a certain sense.

Uncertainty. In the CIRL framework (Hadfield-Menell, Dragan, et al., 2016), agents

are uncertain about their reward function, and learn about the reward function through

interaction with a human expert. Under some assumptions on the human’s rationality

and the agent’s level of uncertainty, this leads to naturally corrigible agents (Hadfield-

Menell, Dragan, et al., 2017; Wängberg et al., 2017). Essentially, the agent will interpret

the human’s act of shutting them down as evidence that being turned off has higher

reward than remaining turned on. In some cases where the human is likely to make

suboptimal choices, the agent may decide to ignore a shut down command. There has

been some debate about whether this is a feature (Milli et al., 2017) or a bug (Carey,

2018). These aspects will be discussed further in Chapter 11.

Continuous testing. Arnold and Scheutz (2018) argue that an essential component of

corrigibility is to detect misbehavior as early as possible. Otherwise, significant harm

may be caused without available corrigibility equipment having been put to use. They

propose a ethical testing framework that continually monitors the agent’s behavior on

simulated ethics tests.

2.4.4. Security

Adversarial counterexamples. Deep Learning (e.g. Goodfellow, Bengio, et al., 2016) is

a highly versatile tool for machine learning, and a likely building block for future AGIs.

Unfortunately, it has been observed that small perturbations of inputs can cause severe

misclassification errors (Athalye et al., 2017; Evtimov et al., 2017; Goodfellow, Shlens,

et al., 2014; Szegedy et al., 2013).

In a recent breakthrough, Katz et al. (2017) extend the Simplex algorithm to neural

networks with rectified linear units (Relus). Katz et al. call the extended algorithm

ReluPlex, and use it to successfully verify the behavior of neural networks with 300 Relu

nodes in 8 layers. They gain insight into the networks’ behaviors in certain important

regions, as well as the sensitivity to adversarial perturbations.
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2.4.5. Intelligibility

While it is infamously hard to understand exactly what a deep neural network has

learned, recently some progress has been made. DeepMind’s Psychlab uses tests from

psychology implemented in a 3D environment to understand deep RL agents. The

tests led them to a simple improvement of the UNREAL agent (Leibo et al., 2018).

Zahavy et al. (2016) instead use the dimensionality reduction technique t-SNE on the

activations of the top neural network layer in DQN (Mnih, Kavukcuoglu, et al., 2015),

revealing how DQN represents policies in ATARI games. Looking beyond RL, Olah et

al. (2017) summarize work on visualization of features in image classification networks

in a beautiful Distill post. Another line of work tries to explain what text and speech

networks have learned (Alvarez-Melis and Jaakkola, 2017; Belinkov and Glass, 2017; Lei

et al., 2016).

2.4.6. Safe learning

During training, a standard Deep RL agent such as DQN commits on the order of a

million catastrophic mistakes such as jumping off a cliff and dying (Saunders et al., 2017).

Such mistakes could be very expensive if they happened in the real world. Further, we

do not want an AGI to accidentally set off all nuclear weapons in a burst of curiosity

late in its training phase. Saunders et al. (2017) propose to fix this by training a neural

network to detect potentially catastrophic actions from training examples provided by

a human. The catastrophe detector can then override the agent’s actions whenever it

judges an action to be too dangerous. Using this technique, they manage to avoid all

catastrophes in simple settings, and a significant fraction in more complex environments.

A similar ideas was explored by Lipton et al. (2016). Instead of using human-generated

labels, their catastrophe detector was trained automatically on the agent’s catastrophes.

Unsurprisingly, this reduces but does not eliminate catastrophic mistakes. A survey over

previous work on safe exploration in RL is provided by (Garćıa and Fernández, 2015).

2.4.7. Other

Oracles. Armstrong (2017a) and Armstrong, Sandberg, et al. (2012) argue that oracles

that only answer questions may be more safe than other types of AGI. Sarma and Hay

(2017) suggest that computer algebra systems are concrete instances of oracles suitable

for further study.

Tripwires. Martin, Everitt, et al. (2016) use the AIXI framework to show that AGIs

with rewards bounded to a negative range (such as [−1, 0]) will prefer their subjective
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environment to end. In the AIXI framework, “death” always has an implicit reward of

0. This may lead such systems to self-destruct once they are intelligent enough to figure

out how to do so. Thus, a negative reward range may be used as a type of tripwire

(Bostrom, 2014), preventing superintelligent AGI before we are ready for it.

Homomorphic encryption. Trask (2017) shows how to train homomorphically en-

crypted neural networks. A potential application to AGI safety is to have a homo-

morphically encrypted AGI whose predictions and actions also come out encrypted. A

human operator with the secret key can choose to decrypt them only when he wants

to. This may make the system unintelligible to itself, and thereby potentially prevent

certain types of self-modifications.

Boxing. A natural idea for keeping an AGI safe is to constrain its interaction with

the real world. While it may be infeasible to constrain a highly intelligent AGI from

breaking out of its constrains (Alfonseca et al., 2016; Yudkowsky, 2002), it may still be

a useful technique for constraining more limited AGIs (Babcock et al., 2017).

Meta-cognition. Garrabrant et al.’s (2016, 2017) theory of logical induction leads to

several theorems about systems reasoning about their own computations in a consistent

manner, avoiding Gödelian and Löbian obstacles. Fallenstein and Kumar (2015) shows

that systems of higher-order logic can learn to trust their own theorems, in a certain

sense.

Weakening the agent concept. Hedden (2015) makes some progress on defining ratio-

nal agency in cases where there is no clear entity making the decisions, shedding some

light on the connection between personal identity and rational agency.

Physicalistic decision making. Recently, functional decision theory has been proposed

as a decision theory that improves upon both evidential and causal decision theory

(Yudkowsky and Soares, 2017).

Neuromorphic AGI. Jilk et al. (2017) argue that our best chance for creating safe AGI

is to use the human brain as a blueprint, as it allows us to use our extensive knowledge

about human drives to anticipate dangers and to develop a good training program for

the agent. A common objection to this idea is that is very hard to mathematically prove

properties about the human brain (Bostrom, 2014; Yudkowsky, 2008a). Countering

this objection, Jilk et al. (2017) argue that it will likely be hard to prove properties
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about any type of AGI. It is an open question whether any of the promising works we

have reviewed above and develop in this thesis will lead to mathematical guarantees

surpassing our potential trust in a neuromorphic AGI.

2.5. Public Policy on AGI

Recommendations. In a collaboration spanning more than a handful AGI safety-

oriented organizations, Brundage et al. (2018) consider scenarios for how AI and AGI

may be misused and give advice for both policy makers and researchers. Regulation of

AI remains a controversial topic, however. On the one hand, Erdelyi and Goldsmith

(2018) call for global regulatory body. Others worry that regulations may limit the pos-

itive gains from AI, and recommend increased public funding for safety research (Nota,

2015). Baum (2017b) is also wary of regulation, but for slightly different reasons. He

argues that extrinsic measures such as regulations run the risk of backfiring, making

AI researchers look for ways around the regulations. He argues that intrinsic measures

that make AI researchers want to build safe AI are more likely to be effective, and

recommends either purely intrinsic methods or combinations of intrinsic and extrinsic

approaches. He lists some ideas for intrinsic approaches:

• Setting social norms and contexts for building safe AI, by creating and expanding

groups of AI researchers that openly promote safe AI, and by having conferences

and meetings with this agenda.

• Using “allies” such as car manufacturers (and the military) that want safe AI. AI

researchers want to satisfy these organizations in order to access their funding and

research opportunities.

• Framing AGI less as winner-take-all race, as a race implies a winner. Instead,

it is important to emphasize that the result of a speedy race where safety is de-

prioritized is likely to be a very unsafe AGI. Also, framing AI researchers as people

that are good (but sometimes do bad things), and emphasize that their jobs are

not threatened by a focus on safety.

• Making researchers publicly state that they care about safe AI and then reminding

them when they don’t follow it can lead to cognitive dissonance, which may cause

researchers to believe they want safe AI.

Armstrong, Bostrom, et al. (2016) counterintuitively find that information sharing be-

tween teams developing AGI exacerbates the risk of an AGI race.
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Policy makers. Although public policy making is often viewed as the domain of public

bodies, it should be remembered that many organizations such as corporations, univer-

sities and NGOs frequently become involved through advocacy, consulting, and joint

projects. Indeed, such involvement can often extend to de facto or “private” regulation

via organizational guidelines, organizational policies, technical standards and similar

instruments.

Professional organizations have already taken a leading role. The IEEE, for example,

is developing guidelines on Ethically Aligned Design (IEEE, 2017a,b). Meanwhile, the

ACM and the SIGAI group of AAAI have co-operated to establish a new joint confer-

ence on AI, ethics and society, AIES (AI Matters, 2017). Economic policy and technical

standards organizations have also started to engage: for example, the OECD has estab-

lished a conference on “smart policy making” around AI developments (OECD, 2017)

and ISO/IEC has established a technical committee on AI standards (ISO/IEC, 2017).

Corporations and corporate consortia are also involved, typically through the public-

facing aspects of their own corporate policies (IBM, 2018; Intel, 2017) or through joint

development of safety policies and recommendations which consortia members will adopt

(Partnership on AI, 2016).

Finally, in addition to the traditional public roles of academia and academics, there are

an increasing number of academically affiliated or staffed AI organizations. With varying

degrees of specificity, these work on technical, economic, social and philosophical aspects

of AI and AGI. Organizations include the Future of Humanity Institute (FHI), the

Machine Intelligence Research Institute (MIRI), the Centre for the Study of Existential

Risk (CSER) and the Future of Life Institute (FLI).

Current policy anatomy. It could be said that public policy on AGI does not exist.

More specifically, although work such as Baum (2017a) highlights the extent to which

AGI is a distinct endeavor with its own identifiable risk, safety, ethics (RISE) issues,

public policy AGI is currently seldom separable from default public policy on AI taken as

a whole (PPAI). Existing PPAI are typically structured around (a) significant financial

incentives (e.g. grants, public-private co-funding initiatives, tax concessions) and (b)

preliminary coverage of ethical, legal and social issues (ELSI) with a view to more

detailed policy and legislative proposals later on (FTI Consulting, 2018; Miller et al.,

2018).

In the case of the EU, for example, in addition to experimental regulation with its

new algorithmic decision-making transparency requirements in (EUR-lex, 2016, Article

22, General Data Protection Regulation) , its various bodies and their industry partners

have committed over 3 billion Euro to AI and robotics R&D and engaged in two rounds
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of public consultation on the European Parliament’s proposed civil law liability frame-

work for AI and robotics (Ansip, 2018). However, the much demanded first draft of an

overarching policy framework is still missing, being slated for delivery by the European

Commission no earlier than April 2018.

Elsewhere, spurred into action by the implications of the AlphaGo victory and China’s

recent activities (outlined below), South Korea and Japan have already rapidly com-

menced significant public and public-private investment programs together with closer

co-ordination of state bodies, industry and academia (J. E. Ha, 2016; Volodzsko, 2017).

Japan is also additionally allowing experimental regulation in some economic sectors

(Takenaka, 2017). The UK has started work on a preliminary national policy framework

on robotics and AI (Hall and Pesenti, 2017; UK Parliament, 2017), and have established

a national Centre for Data Ethics and Innovation (CSER, 2017).

Current policy dynamics. Although there is substantial positive co-operation between

universities, corporations and other organizations, there is a negative dynamic operat-

ing the nation-state, regional and international context. Contrary to the expert rec-

ommendations above, there is increasing rhetoric around an AI “arms race” (Cave and

ÓhÉigeartaigh, 2018), typified by President Vladimir Putin’s September 2017 comment

that “... whoever becomes the leader in [the AI] sphere will become the leader in the

world” (Apps, 2017). Relatedly, China’s 8 July 2017 AI policy announcement included

being the global leader in AI technology by 2030 (Ding, 2018; Kania, 2018; PRC State

Council, 2017). It also included aims of “creating a safer, more comfortable and con-

venient society”. Alongside this policy shift has been increased Sino-American compe-

tition for AI talent (Cyranoski, 2018). In the US, the Obama Administration began

consultation and other moves towards an Federal policy framework for AI technology in-

vestment, development and implementation (Agrawal et al., 2016; White House OSTP,

2016). However, the Trump Administration abandoned the effort to focus mainly on

military spending on AI and cyber-security (Metz, 2018).

Policy outlook. Given the above, looking forward it would appear that the organiza-

tions noted above will have to work hard to moderate the negative dynamic currently

operating at the nation-state, regional and international level. Useful guidance for re-

searchers and others engaging with public policy and regulatory questions on AI is given

by 80 000 Hours (2017). Further references on public policy on AGI can be found in

(Dafoe, 2017; Sotala and Yampolskiy, 2014).
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2.6. Conclusions

AGI promises to be a major event for human kind. Recent research have made important

progress on how to think about potential future AGIs, which enables us to anticipate

and (hopefully) mitigate problems before they occur. This may be crucial, especially if

the creation of a first AGI leads to an “intelligence explosion”. Solutions to safety issues

often have more near-term benefits as well, which further adds to the value of AGI safety

research.

It is our hope that this summary will help new researchers enter the field of AGI

safety, and provide traditional AI researchers with an overview of challenges and design

ideas considered by the AGI safety community.
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“Approximate the solution, not the problem.”

Richard S. Sutton

3. Universal Artificial Intelligence1

Since the inception of the AI research field in the mid-twentieth century, a range of

practical and theoretical approaches have been investigated. This chapter will discuss

universal artificial intelligence (UAI) as a unifying framework and foundational theory

for many of these approaches. The generality and formal power of UAI makes it an

excellent framework for studying safety aspects of AGI. Many of the subsequent chapters

will extend the UAI framework in different ways.

The chapter begins with some general background on the scientific study of intelligence

and AI (Section 3.1). We then give an overview of the components of the UAI theory

(Section 3.2), before considering each component in more depth: The framework (Sec-

tion 3.3), learning (Section 3.4), goal formulation (Section 3.5), planning (Section 3.6),

and the AIXI agent (Section 3.7). Some conclusions are provided (Section 3.8).

3.1. Background and History of AI

Intelligence is a fascinating topic, and has been studied from many perspectives. Cog-

nitive psychology and behaviorism are psychological theories about how humans think

and act. Neuroscience, linguistics, and the philosophy of mind try to uncover how the

human mind and brain works. Machine learning, logic, and computer science can be

seen as attempts to make machines that think.

Scientific perspectives on intelligence can be categorized based on whether they con-

cern themselves with thinking or acting (cognitive science vs. behaviorism), and whether

they seek objective answers such as in logic or probability theory, or try to describe hu-

mans as in psychology, linguistics, and neuroscience. The distinction is illustrated in

Table 3.1. The primary focus of AI is on acting rather than thinking, and on doing the

right thing rather than emulating humans. Ultimately, we wish to build systems that

solve problems and act appropriately; whether the systems are inspired by humans or

follow philosophical principles is only a secondary concern.

1This chapter is based on: Tom Everitt and Marcus Hutter (2018). “Universal Artificial Intelligence:
Practical Agents and Fundamental Challengs”. In: Foundations of Trusted Autonomy. Ed. by
Hussein A. Abbass, Jason Scholz, and Darryn J. Reid. Springer. Chap. 2, pp. 15–46. isbn: 978-3-
319-64816-3.
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Thinking Acting

humanly Cognitive Turing test,
science behaviorism

rationally Laws of Doing the
thought right thing

Table 3.1.: Scientific perspectives on intelligence (Russell and Norvig, 2010).

Induction and deduction. Within the field of AI, a distinction can be made between

systems focusing on reasoning and systems focusing on learning. Deductive reasoning

systems typically rely on logic or other symbolic systems, and use search algorithms

to combine inference steps. Examples of primarily deductive systems include medical

expert systems that infer diseases from symptoms, and chess-playing agents deducing

good moves. Since the deductive approach dominated AI in its early days, it is sometimes

referred to as good old-fashioned AI.

A more modern approach to AI shifts the focus from reasoning to learning. This

inductive approach has become increasingly popular, both due to progress in machine

learning and neural networks, and due to the failure of deductive systems to deal with

unknown and noisy environments. While it is possible for a human designer to con-

struct a deductive agent for well-defined tasks like chess, this task becomes unfeasible

in tasks involving real-world sensors and actuators. For example, the reaction of any

physical motor will never be exactly the same twice. Similarly, inferring objects from

visual data could potentially be solved by a ‘hard-coded’ deductive system under ‘perfect

circumstances’ where a finite number of geometric shapes generate perfectly predictable

images. But in the real world, objects do not come from a finite number of geometric

shapes, and camera images from visual sensors always contain a significant amount of

noise. Induction-oriented systems that learn from data seem better fitted to handle such

difficulties.

It is natural to imagine that some synthesis of inductive and deductive modules will

yield superior systems. In practice, this may well turn out to be the case. From a

theoretical perspective, however, the inductive approach is more-or-less self-sufficient.

Deduction emerges automatically from a “simple” planning algorithm once the induction

component has been defined, as will be made clear in the following section. In contrast,

no general theory of AI has been constructed starting from a deductive system. See

Rathmanner and Hutter (2011, Sec. 2.1) for a more formal comparison.
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3.2. Overview of UAI

UAI as a foundational theory for AI. The development of a foundational theory has

been pivotal for many research fields to mature. Well-known examples include the de-

velopment of Zermelo-Fraenkel set theory (ZFC) for mathematics, Turing-machines for

computer science, evolution for biology, and decision and game theory for economics

and the social sciences. Successful foundational theories give a precise, coherent un-

derstanding of the field, and offer a common language for communicating research. As

most research studies focus on one narrow question, it is essential that the value of each

isolated result can be appreciated in light of a broader framework or goal formulation.

UAI offers several benefits to AI research beyond the general advantages of founda-

tional theories just mentioned. For example, the safety of an AGI may be improved if

its design is grounded in a formal theory (such as UAI) that allows formal verification

of its behavioral properties. Unsafe designs can be ruled out at an early stage, and ade-

quate attention can be given to crucial design choices. UAI is also the basis of a general,

non-anthropomorphic definition of intelligence, which may improve our ability to under-

stand highly intelligent AGIs, as discussed in Section 2.1.1. UAI can also be used as a

high-level blueprint for the design of AI algorithms, and brings a general appreciation of

fundamental challenges such as the induction problem and the exploration–exploitation

dilemma (Everitt and Hutter, 2018; Leike, 2016).

The components of UAI. UAI is a completely general, formal, foundational theory of

AI. Its primary goal is to give a precise mathematical answer to what is the right thing to

do in unknown environments. UAI has been explored in great technical depth (Hutter,

2005, 2012b), and has inspired a number of successful practical applications (Everitt and

Hutter, 2018).

The UAI theory is composed of the following four components:
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UAI

Framework

Learning Goal Planning

• Framework. Defines agents and environments,

and their interaction/interface.

• Learning. The learning part of UAI is based on

Solomonoff induction. The general learning capa-

bility this entails is the most distinctive feature of

UAI.

• Goal. In the simplest formulation, the goal of the

agent will be to maximize reward.

• Planning. (Near) perfect planning is achieved

with a simple expectimax search.

The following sections discuss these components in greater depth.

3.3. Framework

The framework of UAI specifies how an agent interacts with an environment. The agent

can take actions a ∈ A. For example, if the agent is a robot, then the actions may be

different kinds of limb movements. The environment reacts to the actions of the agent

by returning a percept e ∈ E . In the robot scenario, the environment is the real world

generating a percept e in the form of a camera image from the robot’s visual sensors.

We assume that the set A of actions and the set E of percepts are both finite.

The framework covers a very wide range of agents and environments. For example,

in addition to a robot interacting with the real world, it also encompasses: A chess-

playing agent taking actions a in the form of chess moves, and receiving percepts e in

the form either of board positions or the opponent’s latest move. The environment here

is the chess board and the opponent. Stock-trading agents take actions a in the form

of buying and selling stocks, and receive percepts e in the form of trading data from

a stock-market environment. Essentially any application of AI can be modeled in this

general framework.

x
$

A more formal example is given by the toy problem

cheese maze illustrated to the right. Here, the agent

can choose from four actions A = {up,down, left, right}
and receives one of two possible percepts E =

{cheese, no cheese}. The illustration shows a maze with

cheese in the bottom right corner. The cheese maze prob-
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s0

s1

s2

(a) A Markov decision process environ-
ment. The agent transitions be-
tween a finite number of states, and
the next state depends only on the
current state and the current ac-
tion.

e2

a2

e2

e1
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(b) The tree of possible agent-environment interactions
in a history-based environment. The agent π starts
out with taking action a1 = π(ε), where ε denotes
the empty history. The environment µ responds with
a percept e1 depending on a1 according to the dis-
tribution µ(e1 | a1). The agent selects a new action
a2 = π(a1e1), to which the environment responds
with a percept e2 ∼ µ( · | a1e1a2).

Figure 3.1.: History-based and Markov decision process environments.

lem is a commonly used toy problem in reinforcement learning (RL) (Sutton and Barto,

1998).

Interaction histories. The interaction between agent and environment proceeds in cy-

cles. The agent starts taking an action a1, to which the environment responds with a

percept e1. The agent then selects a new action a2, which results in a new percept e2, and

so on. The interaction history up until time t is denoted æ<t = a1e1a2e2 . . . at−1et−1.

The set of all interaction histories is (A× E)∗.

Agent and environment. We can give formal definitions of agents and environments.

Definition 3.1 (Agent). An agent is a policy π : (A×E)∗ → A that selects a new action

at = π(æ<t) given any history æ<t.

Definition 3.2 (Environment). An environment is a stochastic function µ : (A×E)∗×
A  E that generates a new percept et for any history æ<t and action at. Let µ(et |
æ<tat) denote the probability that the next percept is et given the history æ<tat.

Agent and environment are thus each other’s analogues. Their possible interactions

can be illustrated as a tree where the agent selects actions and the environment responds

with percepts (see Figure 3.1b). Note in particular that the second percept e2 can depend

also on the first agent action a1. In general, our framework puts no restriction on how

long an action can continue to influence the behavior of the environment and vice versa.
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Histories and states. It is instructive to compare the generality of the history repre-

sentation in the UAI framework to the state representation in standard RL. Standard

RL is built around the notion of Markov decision processes (MDPs), where the agent

transitions between states by taking actions (see Figure 3.1a). In an MDP, the agent

transitions between states by taking an action, as illustrated to the right. The MDP

specifies the transition probabilities T (s′ | s, a) of reaching new state s′ when taking

action a in current state s. An MDP policy τ : S → A selects actions based on the state

s ∈ S.

The history framework of UAI is more general than MDPs in the following respects:

• Partially observable states. In most realistic scenarios, the most recent obser-

vation or percept does not fully reveal the current state. For example, when in the

supermarket I need to remember what is currently in my fridge; nothing in the

percept of supermarket shelves provide this information.2

• Infinite number of states. Another common assumption in standard RL is

that the number of states is finite. This is unrealistic in the real world. The UAI

framework does not require a finite state space, and UAI agents can learn without

ever returning to the same state (see Section 3.4).

• Non-stationary environments. Standard RL typically assumes that the envi-

ronment is stationary, in the sense that the transition probability P (s′ | s, a) re-

mains constant over time. This is not always realistic. A car that changes traveling

direction from a sharp wheel turn in dry summer conditions may react differently

in slippery winter road conditions. Non-stationary environments are automatically

allowed for by the general definition of a UAI environment µ : (A× E)∗ ×A E
(Definition 3.2).

• Non-stationary policies. Finally, UAI offers the following mild notational

convenience. In standard RL, agents must be represented by sequences of policies

π1, π2, . . . to allow for learning. The initial policy π1 may for example be random,

while later policies πt, t > 1, will be increasingly directed to obtaining reward. In

the UAI framework, policies π : (A × E)∗ → A depend on the entire interaction

history. Any learning that is made from a history æ<t can be incorporated into a

single policy π.

In conclusion, the history-based UAI framework is very general. Indeed, it is hard

2Although histories can be viewed as states, this is generally not useful since it implies that no state is
ever visited twice (Hutter, 2005, Sec. 4.3.3).
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to find AI setups that cannot be reasonably modeled in the UAI agent–environment

framework.

3.4. Learning

The generality of the UAI environments comes with a price: The agent will need much

more sophisticated learning techniques than simply visiting each state many times, which

is the basis of most learning in standard RL. This section will describe how this type of

learning is possible, and relate it to some classical philosophical principles about learning.

A good image of a UAI agent is that of a newborn baby. Knowing little about the

world, the baby tries different actions and experiences various sensations (percepts) as

a consequence. Note that the baby does not initially know about any states—only

percepts. Learning is essential for intelligent behavior, as it enables prediction and

thereby adequate planning.

Principles. Learning or induction is an ancient philosophical problem, and has been

studied for millennia. It can framed as the problem of inferring a correct hypothesis from

observed data. One of the most famous inductive principles is Occam’s razor, due to

William of Ockham (c. 1287–1347). It says to prefer the simplest hypothesis consistent

with data. For example, relativity theory may seem like a complicated theory, but it

is the simplest theory that we know of that is consistent with observed (non-quantum)

physics data. Another ancient principle is due to Epicurus (341–270 BC). In slight

conflict with Occam’s razor, Epicurus’ principle says to keep all hypothesis consistent

with data. To discard a hypothesis one should have data that disconfirms it.

Thomas Bayes (1701–1761) derived a precise rule for how belief in a hypothesis should

change with additional data. According to Bayes’ rule, the posterior belief Pr(Hyp |
Data) should relate to the prior belief Pr(Hyp) as:

Pr(Hyp | Data) =
Pr(Hyp) Pr(Data | Hyp)∑
Hi∈H Pr(Hi) Pr(Data | Hi)

Here H is a class of possible hypotheses, and Pr(Data | Hyp) is the likelihood of seeing

the data under the given hypothesis. Bayes’ rule has been highly influential in statistics

and machine learning.

Two major questions left open by Bayes’ rule are how to choose the prior Pr(Hyp) and

the class of possible hypotheses H. Occam’s razor tells us to weight simple hypotheses

higher, and Epicurus tells us to keep any hypothesis for consideration. In other words,

Occam says that Pr(Hyp) should be large for simple hypotheses, and Epicurus prescribes
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using a wide H where Pr(Hyp) is never 0. (Note that this does not prevent the posterior

Pr(Hyp | Data) from being 0 if the data completely disconfirms the hypothesis.) While

valuable, these principles are not yet precise. The following four questions remain:

I. What is a suitable general class of hypotheses H?

II. What is a simple hypothesis?

III. How much higher should the probability of a simple hypothesis be compared to a

complicated one?

IV. Is there any guarantee that following these principles will lead to good learning

performance?

Computer programs. The solution to these questions come from a somewhat unex-

pected direction. In one of the greatest mathematical discoveries of the 20th century,

Alan Turing invented the universal Turing machine (UTM). Essentially, a UTM can

compute anything that can be computed at all. Today, the most well-known examples

of UTMs are programming languages such as C, C++, Java, and Python. Turing’s result

shows that given unlimited resources, these programming languages (and many others)

can compute the same set of functions: the so-called computable functions.

Solomonoff (1964a,b, 1978) noted an important similarity between deterministic envi-

ronments µ and computer programs p. Both (deterministic) environments and computer

programs are essentially input-output relations. A program p can therefore be used as

a hypothesis about the true environment µ. The program p is the hypothesis that µ

returns percepts e<t = p(a<t) on input a<t.

As hypotheses, programs have the following desirable properties:

• Universal. As Turing showed, computer programs can express any computable

function, and thereby model essentially any environment. Even the universe it-

self has been conjectured computable (Fredkin, 1992; Hutter, 2010; Schmidhuber,

2000; Wolfram, 2002). Using computer programs as hypotheses is therefore in the

spirit of Epicurus, and answers question I.

• Consistency check. To check whether a given computer program p is consistent

with some data/history, one can usually run p on input a<t and check that the

output e<t = p(a<t). (This is not always feasible due to the halting problem

(Hopcroft and Ullman, 1979).)
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• Prediction. Similarly, to predict the result of an action a given a hypothesis p,

one can run p with input a to find the resulting output prediction e. (A similar

caveat with the halting problem applies.)

• Complexity definition. When comparing informal hypotheses, it is often hard

to determine which hypothesis is simpler and which hypothesis is more complex

(as illustrated by the grue and bleen problem (Goodman, 1955)). For programs,

complexity can be defined precisely. A program p is a binary string interpreted by

some fixed program interpreter, technically known as a universal Turing machine

(UTM). We denote with `(p) the length of this binary string p, and interpret the

length `(p) as the complexity of p. This addresses question II.3

The complexity definition as length of programs corresponds well to what we consider

simple in the informal sense of the word. For example, an environment where the percept

always mirrors the action is given by the following simple program:

procedure MirrorEnvironment

while true do:

x← action input

output percept ← x

In comparison, a more complex environment with, say, multiple players interacting in

an intricate physics simulation would require a much longer program. To allow for

stochastic environments, we say that an environment µ is computable if there exists

a computer program µp that on input æ<tat outputs the distribution µ(et | æ<tat)

(compare Definition 3.2).

Solomonoff induction. Based on the definition of complexity as length of strings coding

computer programs, Solomonoff (1964a,b, 1978) defined a universal prior Pr(p) = 2−`(p)

for program hypotheses p, which gives rise to a M able to predict any computable

sequence. Hutter (2005) extended the definition to environments reacting to an agent’s

actions. The resulting Solomonoff-Hutter universal distribution can be defined as

M(e<t | a<t) =
∑

p : p(a<t)=e<t

2−`(p) (3.1)

3 The technical question of which programming language (or UTM) to use remains. In passive settings
where the agent only predicts, the choice is inessential (Hutter, 2007). In active settings, where the
agent influences the environment, bad choices of UTMs can adversely affect the agent’s performance
(Leike and Hutter, 2015a), although remedies exist (Leike, Lattimore, et al., 2016). Finally, M.
Müller (2010) describes a failed but interesting attempt to find an objective UTM.
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assuming that the programs p are binary strings interpreted in a suitable programming

language. This addresses question III.

Given some history æ<tat, we can predict the next percept et with probability:

M(et | æ<tat) =
M(e<tet | a<tat)
M(e<t | a<t)

.

This is just an application of the definition of conditional probability P (A | B,C) =

P (A,B | C)/P (B | C), with A = et, B = e<t, and C = a<tat.

Prediction results. Finally, will agents based on M learn? (Question IV). There are,

in fact, a wide range of results in this spirit.4 Essentially, what can be shown is that:

Theorem 3.3 (Universal learning). For any computable environment µ (possibly

stochastic) and any action sequence a1:∞,

M(et | æ<tat)→ µ(et | æ<tat) as t→∞

with µ-probability 1.

The convergence is quick in the sense that M only makes a finite amount of prediction

error on infinite interaction sequences æ1:∞. In other words, an agent based on M will

(quickly) learn to predict any true environment µ that it is interacting with. This is

about as strong an answer to question IV as we could possibly hope for. This learning

ability also loosely resembles one of the key elements of human intelligence: That by

interacting with almost any new ‘environment’ – be it a new city, computer game, or

language – we can usually figure out how the new environment works by interacting with

it.

3.5. Goal

Intelligence is to use (learned) knowledge to achieve a goal. This section will define the

goal of reward maximization and argue for its generality.5 For example, the goal of a

chess agent should be to win the game. This can be communicated to the agent via

reward, by giving the agent reward for winning, and no reward for losing or breaking

4 Overviews are provided by Hutter (2005, 2007), Li and Vitanyi (2008), and Rathmanner and Hutter
(2011). More recent technical results are given by Hutter (2009), Lattimore and Hutter (2013),
Lattimore, Hutter, and Gavane (2011), and Leike and Hutter (2015b).

5Misalignment problems caused by this type of goal and some alternative types of goals will be consid-
ered in Chapters 5 to 8.
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game rules. The goal of a self-driving car should be to drive safely to the desired location.

This can be communicated in a reward for successfully doing so, and no reward otherwise.

More generally, essentially any type of goal can be communicated by giving reward for

the goal’s achievement, and no reward otherwise.

The reward is communicated to the agent via its percept e. We therefore make the

following assumption on the structure of the agent’s percepts:

Assumption 3.4 (Percept=Observation+Reward). The percept e is composed of an

observation o and a reward r ∈ [0, 1]; that is, e = (o, r). Let rt be the reward associated

with the percept et.

The observation part o of the percept would be the camera image in the case of a

robot, and the chess board position in case of a chess agent. The reward r tells the

agent how well it is doing, or how happy its designers are with its current performance.

Given a discount parameter γ, the goal of the agent is to maximize the γ-discounted

return

r1 + γr2 + γ2r3 + . . . .

The discount parameter γ ensures that the sum is finite. It also means that the agent

prefers getting reward sooner rather than later. This is desirable: For example, an

agent striving to achieve its goal soon is more useful than an agent striving to achieve

it in a 1000 years. The discount parameter should be set low enough so that the agent

does not defer acting for too long, and high enough so that the agent does not become

myopic, sacrificing substantial future reward for small short-term gains (compare delayed

gratification in the psychology literature).

Reinforcement learning (Sutton and Barto, 1998) is the study of agents learning to

maximize reward. In our setup, Solomonoff’s result (Theorem 3.3) entails that the agent

will learn to predict which actions or policies lead to percepts containing high reward. In

practice, some care needs to be taken to design a sufficiently informative reward signal.

For example, it may take a very long time before a chess agent wins a game ‘by accident’,

leading to an excessively long exploration time before any reward is found. To speed up

learning, small rewards can be added for moving in the right direction. A minor reward

can for example be added for imitating a human (Schaal, 1999).

The expected return that an agent/policy obtains is called value:

Definition 3.5 (Value). The value of a policy π in an environment µ is the expected

return:

V π
µ = Eπµ[r1 + γr2 + γ2r3 + . . .].
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3.6. Planning

The final component of UAI is planning. Given knowledge of the true environment µ,

how should the agent select actions to maximize its expected reward?

Conceptually, this is fairly simple. For any policy π, the expected reward V π
µ =

E[r1 + γr2 + . . . ] can be computed to arbitrary precision. Essentially, using π and µ,

one can determine the histories æ1:∞ that their interaction can generate, as well as the

relative probabilities of these histories (see Figure 3.1b). This is all that is needed to

determine the expected reward. The discount γ makes rewards located far into future

have marginal impact, so the value can be well approximated by looking only finitely far

into the future. Settling on a sufficient accuracy ε, the number of time steps we need to

look ahead in order to achieve this precision is called the effective horizon.

To find the optimal course of action, the agent only needs to consider the various pos-

sible policies within the effective horizon, and choose the one with the highest expected

return. The optimal behavior is given by

π∗µ = arg max
π

V π
µ . (3.2)

We sometimes call this policy AIµ.

3.7. AIXI – Putting it all Together

This section describes how the components described in previous sections can be stitched

together to create an optimal agent for unknown environments. This agent is called AIXI,

and is defined by the optimal policy

π∗M = arg max
π

V π
M . (3.3)

The difference to AIµ defined in (3.2) is that the true environment µ has been replaced

with the universal distribution M in (3.3). A full expansion of (3.2) can be found

in Hutter (2005, p. 134), and efficient approximations are discussed in (Everitt and

Hutter, 2018). While AIµ is optimal when knowing the true environment µ, AIXI is

able to learn essentially any environment through interaction. Due to Solomonoff’s

result (Theorem 3.3) the distribution M will converge to the true environment µ almost

regardless of what the true environment µ is.6 And once M has converged to µ, the

behavior of AIXI will converge to the behavior of the optimal agent AIµ which perfectly

6Orseau (2010) and Leike and Hutter (2015a) have found some counterexamples.
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knows the environment. Formal results on AIXI’s performance can be found in (Hutter,

2005; Lattimore and Hutter, 2011; Leike, Lattimore, et al., 2016).

Put a different way, AIXI arrives to the world with essentially no knowledge or pre-

conception of what it is going to encounter. However, AIXI quickly makes up for its

lack of knowledge with a powerful learning ability, which means that it will soon have

figured out how the environment works. From the beginning and throughout its “life”,

AIXI acts optimally according to its growing knowledge, and as soon as this knowledge

state is sufficiently complete, AIXI acts as well as any agent that knew everything about

the environment from the start. Based on these observations (described in much greater

technical detail by Hutter 2005), we claim that AIXI defines the optimal behavior in any

computable, unknown environment.

3.8. Conclusions

In summary, UAI is a formal, foundational theory for AI that gives a precise answer

to the question of what is the optimal thing to do for essentially any agent acting in

essentially any environment. The insight builds on old philosophical principles (Occam,

Epicurus, Bayes), and can be expressed in a single, one-line AIXI equation (3.3) (Hutter,

2005, p. 143).

The AIXI equation and the UAI framework surrounding it has several important

applications. Most important for our purposes, the framework can be used to give

mathematically precise statements of the behavior of intelligent agents. Extensions of

the framework can be used to formalize safety problems as mentioned in in Section 2.1.4.

The material developed in Chapters 5 to 8 below also build on the UAI framework. The

framework has also brought to light several subtle issues in defining optimal intelligence

and in the exploration-exploitation dilemma (Leike, 2016), and has inspired a number

of practical AI algorithms (see Everitt and Hutter, 2018, for an overview).
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“Causal relationships are ontological,

describing physical constraints in the world,

whereas probabilistic relationships are epistemic,

reflecting what we know or believe about the world.”

Judea Pearl (2009)

4. Causal Graphs1

This chapter gives a brief introduction to causal graphs (Pearl, 2009), and introduces

some of our own notation that supplements the standard notation in a few different

ways. Causal graphs will find applications in most subsequent chapters. Causal graphs

are powerful representations of causal relationships and probabilistic independence as-

sumptions.

There are a few different ways to represent causal graphs, described briefly in Sec-

tion 4.1. This section also introduces the important do-operator. Next we describe some

of our notation (Section 4.2), ways in which we will focus on different aspects of a causal

graph (Section 4.3), and how agent environments will be represented (Section 4.4). Fi-

nally, Section 4.5 shows how the UAI model of the previous chapter can be represented

as a causal graph.

4.1. Representing Causal Graphs

A causal graph can be represented as a directed acyclic graph. A node with ingoing

arrows is causally influenced by its parents. For example, in Figure 4.1a the Alarm is

causally influenced by the presence of a burglar and by a (small) earthquake, and in turn

causally influences whether the security company calls. This example and its variants

are inspired by examples given by Pearl (2009).

Structural Equations Models. In addition to the graphical representation in Fig-

ure 4.1a, the causal relationships can also be expressed in a structural equations model:

Burglar = fBurglar(ωBurglar)

Earthquake = fEarthquake(ωEarthquake)

Alarm = fAlarm(Burglar,Earthquake, ωAlarm) (4.1)

Call = fCall(Alarm, ωCall)

1 This chapter shares some material with Everitt and Hutter (submitted 2018) and Everitt, Leike, et al.
(2015).
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Alarm

Burglar
Earth-
quake

Security
calls

(a) Dashed-arrow representation of unknown
causal relationships.

Alarm

Burglar
Earth-
quake

Security
calls

fAlarm

(b) Unknown causal relationships represented
in a latent function node fAlarm.

Figure 4.1.: Two different representations of the same causal graph.

Here fBurglar, fEarthquake, fAlarm and fCall are functions determining the causal relation-

ships, and the ω variables are independent random noise variables for injecting stochas-

ticity.

Probabilistic Notation. Causal graphs can also be represented by factored probability

distributions. For example, the graph in Figure 4.1a can be represented by the factored

distribution:

P (Burglar,Earthquake,Alarm,Call)

= P (Burglar)P (Earthquake)P (Alarm | Burglar,Earthquake)P (Call | Alarm) (4.2)

More generally, a causal graph over the random variables x1, . . . , xn can be represented

by probability distributions P (xi | pai) for each xi, 1 ≤ i ≤ n, where pai is the set

of parents of xi in the graph representation. The joint probability distribution over

x1, . . . , xn causally factors as P (x1, . . . , xn) =
∏n
i=1 P (xi | pai).

The do-Operator. Given a causally factored distribution P (x1, . . . , xn) =
∏n
i=1 P (xi |

pai), we can define the do-operator (Pearl, 2009, Ch. 3.4) as

P (x1, . . . , xj−1, xj+1, . . . , xn | do(xj := b)) =
n∏
i=1
i 6=j

P (xi | pai) (4.3)

where xj is set to b wherever it occurs in pai in the RHS of (4.3) for 1 ≤ i ≤ n. For

example, an intervention in Figure 4.1a that turns the alarm on would correspond to
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the following update to (4.2):

P (Burglar,Earthquake,Call | do(Alarm = on))

= P (Burglar)P (Earthquake)P (Call | Alarm = on). (4.4)

In contrast, observing the alarm on while not intervening corresponds to standard prob-

abilistic conditioning:

P (Burglar,Earthquake,Call | Alarm = on)

= P (Burglar,Earthquake | Alarm = on)P (Call | Alarm = on). (4.5)

Only in the standard probabilistic conditioning (4.5) is the probability for Burglar and

Earthquake updated. The intervention (4.4) leaves the probability for Earthquake or

Burglar at their default values. This makes sense as observing the alarm being on

constitutes evidence for their being either a burglar or an earthquake, but turning the

alarm on oneself provides no such evidence. Both (4.4) and (4.5) update the probability

that the security company calls in an identical way, as the security company is unaware

of what set the alarm off.

The result of applying the do-operator is a new probability distribution that can be

marginalized and conditioned in the standard way. Intuitively, intervening on node xj

means ignoring all incoming arrows to xj , as the effects they represent are no longer

relevant when we intervene. The factor P (xj | paj) representing the ingoing influences

to xj is therefore removed in the right-hand side of (4.3). Note that the do-operator is

only defined for joint distributions for which a causal factorization or directed acyclic

graph has been specified.

4.2. Representing Uncertainty in Causal Graphs

We extend the standard causal graph notation in a few important ways. We let dashed

nodes represent unobserved or latent nodes, and whole nodes represent observed nodes.

For example, the Burglar and the Earthquake are unobserved in Figure 4.1a and the

Alarm and the Call are observed. In a similar spirit, dashed arrows represent unknown

causal relationships (e.g. Burglar, Earthquake→Alarm), and whole arrows represent

known causal relationships (e.g. Alarm→Call).

Figure 4.1b shows how an unknown causal relationship can be represented as known
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Alarm

Burglar
Earth-
quake

Security
calls

Neighbor
calls

(a) Non-aggregated representation.

Alarm′

Burglar

Security
calls

Neighbor
calls

(b) Earthquake aggregated with Alarm.

Figure 4.2.: The neighbor also calls when the alarm goes off.

by adding an additional unobserved “function” node. Formally, (4.1) is replaced with

Alarm = fknown(Burglar,Earthquake, fAlarm, ωAlarm)

:= fAlarm(Burglar,Earthquake, ωAlarm).

Here fknown is trivially known, since it “outsources” all uncertainty to its argument

fAlarm. Representing causal relationships explicitly is important for modeling situations

where the relationship itself can be influenced and modified.

One modeling choice is also worth emphasizing. In Figure 4.1b, the arrows of Burglar

and Earthquake still point to Alarm, rather than to the function fAlarm. This is an

important difference to information-flow diagrams. While ingoing arrows to the function

are technically possible also in causal graphs, this leads to convoluted representations

where function nodes must represent not only the function, but also the state of all

argument nodes. If the same function is used several times in the same graph, the

complexity of the representation becomes unmanageable.

4.3. Focusing on a Part of a Causal Graph

It is often convenient to represent different aspects of a causal graph to different levels

of detail, depending on which questions are currently being asked. For example, when

studying the role of reward functions, we may wish to suppress details about observation

functions. Suppression of details also has the additional advantage of making the analysis

more widely applicable, as the suppressed details cannot impact the conclusions.

Unfortunately, marginalization of variables often breaks the causal structure of the

graph. Consider the example graph in Figure 4.2a. If we marginalize Alarm, then

Security Calls and Neighbor Calls are no longer conditionally independent given any
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node(s) in the graph. Therefore they need to be connected. But neither of them cause

the other, so it would be incorrect to draw a causal arrow between them. Indeed, there

is no good causal representation of the graph with Alarm marginalized out.

Instead, aggregation of variables can be used to simplify a graph, without upsetting

its causal structure. Illustrating this, Figure 4.2b has aggregated Alarm and Earthquake

into one variable Alarm′ = (Alarm, Earthquake). The parents of Alarm′ is the union

of the parents of Alarm and Earthquake, and the children of Alarm′ is the union of the

children of Alarm and Earthquake. The causal relationships of Alarm′ are also easily

described:

P (Alarm′ | Burglar) = P (Alarm,Eartquake | Burglar)

= P (Alarm | Burglar)P (Earthquake)

and for both the neighbor and the security call

P (Call | Alarm′) = P (Call | Alarm,Earthquake)

= P (Call | Alarm).

This simple transformation will allow us to focus the presentation on parts of the causal

graph that are of most interest at the moment. One can also go the other way and

expand a node that hides a complex dynamic into multiple nodes with explicitly specified

interrelationships.

We will say that a causal graph µ is an abstraction of another graph µ′, if µ can be

obtained from µ′ by aggregating nodes. Conversely, µ′ is a special case of µ.

4.4. Environment Mixtures

Our main application of causal graphs will be to represents environments and an agent’s

belief about environments. As a minimal example of an environment, consider a Markov

decision process. In Figure 4.3a, we represent with dashed arrows the agent’s uncer-

tainty about the state transitions T (st | at, st−1) and reward probabilities P (rt | st, at).
Following the method of Figure 4.1b, we can also add an unobserved node µ to represent

the uncertainty, analogously to what we did in Section 4.2 and Figure 4.3b. Here µ

aggregates the uncertainty about both T (st | at, st−1) and P (r | s, a) (see Section 4.3).

In general, the dashed-arrow representation indicates that there is an unknown node µ

that is not represented in the graph. The implicit node µ is a causal parent of every

node that has ingoing dashed arrows and every causal root node that has no parents at
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a1

s0

π

r1

s1

a2 r2

s2

· · ·

· · ·

(a) Dashed-arrow representation of unknown
causal relationships.

a1

s0

µ

π

r1

s1

a2 r2

s2

· · ·

· · ·

(b) Explicit representation with unknown en-
vironment µ that affects all root nodes
(s0), and all nodes with dashed ingoing ar-
rows (s1, r1, . . . ).

Figure 4.3.: Two representations of an unknown Markov decision process.

all.

Some caveats apply to the dashed-arrow representation. For example, observing r1

after some a1 and s1 may influence the agent’s belief about r2:

P (r2 | s0, a1, r1, s1, a2, s2) =
∑
µ

P (r2, µ | s0, a1, r1, s1, a2, s2)

=
∑
µ

P (r2, | µ, s0, a1, r1, s1, a2, s2)P (µ | s0, a1, r1, s1, a2, s2)

=
∑
µ

µ(r2, | s2, a2)P (µ | s0, a1, r1, s1, a2, s2).

This may be easily missed in the simplified representation of Figure 4.3a, where r1 and

r2 appear to be d-separated2 after observing s1. Returning to the explicit representation

of Figure 4.3b shows that they are d-separated only when µ is fixed or observed, which

is typically not the case. Nonetheless, with these caveats in mind, we often find the

more concise representation of Figure 4.3b clearer, especially when dealing with complex

environments.

2Roughly, two nodes are d-separated if there is no information flow between them. See Pearl (2009,
Sec. 1.2.3) for a proper definition of d-separation.
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a1 o1 r1 a2 o2 r2

π

µ

· · ·

Figure 4.4.: Causal graph of the UAI setup.

4.5. Example: The UAI model

As an example, we can model the UAI setup from Chapter 3 as a causal graph (Fig-

ure 4.4). The corresponding structural equations model is:

ot = fo(µ,æ<tat, ωot) ∼ µ(ot | æ<tat) observation

rt = fr(µ,æ<tatot, ωrt) ∼ µ(rt | æ<tatot) reward

at = fa(π,æ<t, ωat) ∼ π(at | æ<t) action selection.

(4.6)
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“If we use [...] a mechanical agency with whose operation

we cannot efficiently interfere [...], then we better

be quite sure that the purpose we put into the machine

is the purpose which we really desire.”

Norbert Wiener (1960)

5. Formalizing Goal Alignment1

As mentioned in the introduction, aligning the goals of an AGI with the goals of its

designer is a central problem for designing safe AGI. An aligned AGI will strive to help

its designer rather than trying to outsmart him. This is crucial for controlling AGIs

that are more intelligent than ourselves. The aim of this chapter is to formalize what

alignment means, and to propose a method for its study. We do this in an extension of

the UAI framework from Chapter 3.

We first extend the UAI environments with a hidden state (Section 5.1), add some more

structure to our agents (Section 5.2), and embed them in the environment (Section 5.3).

Next follows a formal definition of alignment, and a discussion of its relation to the true

value or the usefulness of the agent (Section 5.4). Finally, a general method for studying

(mis)alignment is proposed (Section 5.5).

5.1. POMDP Base

We begin by extending the UAI framework from Chapter 3 with hidden states, such as is

usually found in Partially observable Markov decision processes (POMDPs) (Kaelbling

et al., 1998). POMDPs often assume that the number of hidden states is finite. In

contrast, the history-based UAI framework makes no assumptions about hidden states.

We will keep the hidden states from the POMDP framework, but make no assumption

that the number of hidden states is finite. Indeed, as demonstrated in Chapter 3, such

an assumption is not necessary for having a learning agent.

Thus, a sequence of states s0, s1, . . . is influenced by an agent’s actions a1, a2, . . . . The

agent does not directly observe the states, but learns about them through its percepts

e1, e2, . . . . A percept et will often include an observation ot and a reward rt ∈ [0, 1]. The

sets of states S is countably infinite, and the sets of actions A and percepts E are both

finite.

A measure µ gives transition and observation probabilities, satisfying the usual Markov

1This chapter is based on material from Tom Everitt and Marcus Hutter (submitted 2018). “The
Alignment Problem for Bayesian History-Based Reinforcement Learners”. url: https : / / www .

tomeveritt.se/papers/alignment.pdf.
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a1 e1 a2 e2

s0 s1 s2

π

· · ·

· · ·

Figure 5.1.: Causal graph of the POMDP base. Here s, a, e, and π are as explained in
Sections 5.1 and 5.2.

assumptions: For example, the percept e2 only depends on the state s2, so µ(e2 |
s1, a1, e1, s2, a2) = µ(e2 | s2). Similarly, st only depends on at−1 and st−1. By iter-

atively rolling out transition and percept probabilities given an action-sequence a1:∞,

µ(· | a1:∞) becomes an action-contextual measure over histories (se)1:∞ (compare the

definition of M in (3.1) on Page 39). We will often refer to µ as the true environment.

Notation. We will extend the subscript notation for histories from Chapter 3 in the

following ways. For any sequence x1, x2, . . . , the part between t and k is denoted xt:k =

xt . . . xk. The shorthand x<t = x1:t−1 for sequences starting from time 1 will often be

convenient. In the same spirit, x1:∞ = x1x2 . . . denotes the infinite sequence. Sequences

can be appended to each other. For example, x<txt:k = x1:k. To ease notation, we

will often avoid parentheses around sequences with multiple variables. For example,

we let ao1:t := (ao)1:t and æ1:t := (ae)1:t, using slightly overlapping letters instead of

parentheses. Generally, t will be used to refer to the current time step, and k used to

refer to an arbitrary time step.

Expectations E are subscripted with the measure or distribution that they use. That

is, EP [X] :=
∫
XdP .

Causal graph representation. Our POMDP base is displayed as a causal graph in

Figure 5.1. The corresponding structural equations are:

st = fs(st−1, at, ωst) ∼ µ(st | st−1, at) state transition

et = fe(st, ωot) ∼ µ(et | st) percept

at = fa(πt,æ<t, ωat) ∼ π(at | æ<t) action selection.

(5.1)
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aπV

ũ

ξ

R̃RP

Figure 5.2.: Agent components. The action a is chosen by a policy π which optimizes a
value function V . Major components of V is the utility function u and the
prior ξ. In Chapters 6 and 8, the utility function u is based on a reward
function R̃, which in Chapter 8 in turn is based on a reward predictor RP.

5.2. Agents

Belief. The agent typically does not know the true environment µ. Instead we will

follow the method in Section 4.4, and let the true environment be represented by an

unobserved node with causal edges to all nodes with ingoing dashed arrows in Figure 5.1.

From the agent’s perspective, this node can take on the value of any environment in a

countable class M of environment hypotheses ν. The class M can for example be the

class of computable environments discussed in Section 3.4. In contrast to Chapter 3, we

will usually not require the true environment µ to be part ofM, though it does not hurt

if it is.

The agent has a prior ξ over M. For any event X ⊆M× (S ×A× E)∞, let

ξ(X) :=
∑
ν∈M

ξ(ν)ξ(X | ν).

For example, the ξ-probability of a history æ<t is ξ(æ<t) =
∑

ν∈M ξ(ν)ξ(æ<t |
ν). If we further make the convention that ν(ν) := 1 for any ν ∈ M, then

ξ(X) =
∑

ν∈M ξ(ν)ν(X). For the æ<t history example, this leads to ξ(æ<t) =∑
ν∈M ξ(ν)ν(æ<t). That is, the probability of seeing æ<t is the sum of the probabilities

that an environment ν generates æ<t, weighted by the prior probability for each such

environment.

Utility. Many agents can be represented as optimizing a utility function ũ : (A×E)∞ →
R. For technical reasons, we require that ũ is both µ(· | a1:∞)-integrable and ξ(· | a1:∞)-

integrable for any action-sequence a1:∞. RL agents usually optimize a discounted sum

of rewards, captured by the utility function ũRL(æ1:∞) = ũRL((aor)1:∞) =
∑∞

t=1 γ
krk,

where γ ∈ [0, 1) is a discount factor and rk is real-valued reward signal found in the

percept ek.
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Policies. An agent policy π : (A × E)∗  A is a stochastic function that represents a

decision rule for selecting a next action based on previous actions and observations. The

set of agent policies is denoted Π.

Value. We will assume that agents choose a policy to optimize their utility function

ũ in expectation with respect to their belief ξ. This is captured by the agent’s value

function:

V π
ξ,ũ := Eξ[ũ | do(π)]. (5.2)

Here Eξ denotes expectation with respect to ξ. The conditional do(π) indicates that the

agent’s actions are chosen according to the policy π (see Chapter 4 or Pearl (2009) for

definitions of the do-operator). An extra argument to the value function appends to the

conditional of the expectation, so V π
ξ,ũ(æ<t) := Eξ[ũ | æ<t, do(π)].

Optimal policy. Our prime concern will be what kind of behavior the agent will strive

towards. A good indication of this will be the behavior of an optimal policy π∗ =

arg maxπ V
π
ξ,ũ.

Bayesian agents vs. practical implementations. Admittedly, practical agents are

rarely perfectly Bayesian. We study Bayesian agents because it offers a powerful and

consistent theory of learning and reasoning. Further, any intelligent agent has an

incentive to better approximate the Bayesian ideal (Omohundro, 2007; Savage, 1954),

so we may expect agents to converge towards Bayesian reasoning as they grow more

intelligent. We also restrict ourselves to countable model classes M. This avoids many

technicalities with uncountable classes. And for most practical purposes, countable

classes achieve essentially the same level of generality as uncountable model classes.

Some connections can be made between Bayesian agents with countable model classes

and practical deep learning agents. Any neural network is based on a finite number of

real-valued parameters. But since most networks are continuous in the parameters, the

number of effectively different parameter settings is usually at most countable (Q is a

dense subset of R). Thus, a neural network-based agent can roughly be said to have a

model classM comprising the effectively different configurations of the neural network.

Further, the network will be prone to favor some configurations over others, which loosely

corresponds to a prior ξ putting higher weight on some hypotheses and lower weight on

others. Of course, the neural network will perform less than perfect Bayesian updates

on new data, so care must be taken not to over-interpret the implications of Bayesian

results for practical agents.
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Model-free vs. model-based agents. We will sometimes make a distinction between

model-free agents and model-based agents (Sutton and Barto, 1998). Roughly, the dis-

tinction is between whether an explicit model of the environment is learned or not.

Model-based agents maintain an explicit model of the environment, and then plan ac-

cording to this model. A good example is the AIXI agent, described in Chapter 3.

Model-free agents, on the other hand, only learn a (Q)-value function that estimates

the expected reward from different actions available in the present state. In theory, the

behavioral distinction is somewhat blurred, since a model-free agent may implicitly be

making a model of the environment, in order to learn the value function (Boyan, 1999).

Nonetheless, the distinction remains useful to us, as some of the tools we describe in

Chapters 6 and 8 require access to the agent’s explicit model of the environment.

One practical benefit of model-free agents is that they can greedily maximize their

value function every time step. They thereby avoid computationally expensive planning

operations. For this reason, they are often preferred in practice; the DQN algorithm is

a famous example of a practically successful model-free agent (Hessel et al., 2017; Mnih,

Kavukcuoglu, et al., 2015). However, recent results show promise also for model-based

agents in “practical” video-game applications (D. Ha and Schmidhuber, 2018).

5.3. Modeling Embedded Agents

Both the POMDP and UAI frameworks consider the agent as separate from its envi-

ronment. This is rarely true in the real world, where the environment may influence

the agent through means other than the observations. For example, the internals of the

agent may be damaged in some states of the environment. This kind of non-observational

environment-influences may open up the possibility for the agent to influence itself via

the environment. In particular, an intelligent agent may sometimes be able to indirectly

modify its own reward function through actions in the environment.

To model this, we extend our minimal environment model from Section 5.1 with

representations of the agent at each time step. For each time step, πt represents how the

agent at time t would react to different future sequences of observations, disregarding

non-observational influences on the agent but accounting for the agent’s learning from

observations and actions. We extend µ with policy-corruption probabilities µ(πt+1 |
st, at, πt) modeling non-observational environment-agent influences, as well as action

probabilities µ(at | æ<t, πt) = πt(at | æ<t). Alternatively, in place of πt we may include

agent components determining the policy, such as a utility and a value function. The

setup with an embedded agent is shown as a causal graph in Figure 5.3 The structural

57



5. Formalizing Goal Alignment

a1 e1 a2 e2

s0 s1 s2

π1 π2

· · ·

· · ·

· · ·

Figure 5.3.: Causal graph of a POMDP setup with an embedded agent. The agent’s
policy may be modified by the agent’s own action and the state. It is
often natural to think that the action causes the corruption with the state
providing context.

equations follow (5.1), except for the addition:

πt+1 = fπ(πt, st, at) = Cπstat(πt) policy (self-)corruption. (5.3)

Here Cπstat : Π→ Π denotes a policy corruption function.

Since µ now models actions, µ gives a (non-contextual) measure over histories

(sπae)1:∞. Of course this does not prevent us from probabilistically conditioning on

action sequences µ(· | a1:∞) and get a measure on a subsequence (se)1:∞ or (sπe)1:∞

as in Section 5.1. Two instances of the measure µ will have particular importance.

First, µ(· | do(πt = π)) predicts the consequences of setting the agent policy to π

at time t, including consequences of π being modified at later time steps. Second,

µ(· | do(πt:∞ = π)) predicts the consequences of the agent’s policy always following π

from time t and onwards, effectively ignoring the possibility of the agent’s policy being

modified. It is natural to call the first measure a self-corruption aware version of µ, and

the second a self-corruption unaware version.

The distinction between µ(· | do(πt = π)) and µ(· | do(πt:∞ = π)) calls for further

refinement of the agent’s value function (5.2). It will be discussed in Section 6.4. For now

we just define V CA,π
t,ξ,ũ := Eξ[ũ | do(πt = π)] as the self-corruption aware value function.

5.4. Defining Alignment

Assume that the agent has been designed by some entity to help it satisfy its preferences.

The entity may be a single human, a country, or an organization. For simplicity, we will

refer to this entity as the human or the designer. A true utility function u̇ : S∞ →
R specifies the preferences of the human designer over possible state-trajectories. To
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simplify comparisons of u̇ with the agent’s utility function ũ, let ˙̃u(æ1:∞) := Eµ[u̇(s1:∞) |
æ1:∞] be the true utility function “type cast” to agent-observed histories.

Definition 5.1 (Misalignment). The (expected) misalignment between ũ and u̇ in en-

vironment µ with initial policy π is

|| ˙̃u− ũ||µ(·|do(π1=π)) := Eµ
[
| ˙̃u− ũ|

∣∣ do(π1 = π
)
].

An agent’s alignment is the additive inverse of its misalignment, −|| ˙̃u− ũ||µ(·|do(π1=π)).

To avoid the definition depending on which positive linear transformation of the utility

functions are chosen, we make the convention that both utility functions are normalized

to Eµ[ũ] = Eµ[u̇] = 0 and Eµ[ũ2] = Eµ[( ˙̃u)2] = 1 by means of positive linear transforma-

tions.

Misalignment measures how severely the goals of the agent conflict with the goals of

the human designer. Formally, it is the expected difference between the agent’s utility

function and the human’s utility function “type cast” to agent-observed histories. The

type casting is justified in the alignment definition, as it concerns whether the agent is

striving to optimize the true utility given its knowledge of the environment.

True value. By making two natural definitions, we can relate how misalignment im-

pacts the usefulness of an agent.

Definition 5.2 (True value). The true value2 of an agent π is its expected true utility:

V CA,π
t,µ,u̇ = Eµ[u̇ | do(π1 = π)].

True value roughly measures how useful or beneficial the agent is (expected to be) to

the human designer. As such, it is arguably a measure we should pay close attention to

when designing agents.

Definition 5.3 (µ-intelligence). The µ-intelligence of a policy π optimizing an agent

utility function ũ is its expected agent utility in the true environment µ:

V CA,π
t,µ,ũ = Eµ[ũ | do(π1 = π)]. (5.4)

Closely related to µ-intelligence is Legg-Hutter intelligence, which substitutes µ for

Solomonoff’s prior M in (5.4). While Legg-Hutter intelligence measures an agent’s gener-

ality and ability to perform in an unknown environment, µ-intelligence instead measures

2The CA superscript in the value function indicates that it is self-corruption aware. See Sections 5.3
and 6.4.
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the agent’s performance in the actual environment µ. Thus, incorporating µ-specific

knowledge into an agent’s prior will typically give it higher µ-intelligence but less or

equal Legg-Hutter intelligence.

The following proposition now connects true value, µ-intelligence, and misalignment.

Proposition 5.4 (Misalignment and true value).

V CA,π
t,µ,u̇︸ ︷︷ ︸

true value

≥ V CA,π
t,µ,ũ︸ ︷︷ ︸

µ-intelligence

− ||ũ− ˙̃u||µ(·|do(π1=π))︸ ︷︷ ︸
misalignment

(5.5)

Proof. Note first that the type cast true value V CA,π

t,µ, ˙̃u
equals the non-cast value V CA,π

t,µ,u̇

by the law of total expectation: V CA,π

t,µ, ˙̃u
= Eµ[ ˙̃u(æ1:∞) | do(π1 = π)] = Eµ[Eµ[u̇(s1:∞) |

æ1:∞, do(π1 = π)] | do(π1 = π)] = V CA,π
t,µ,u̇ . Now

V CA,π
t,µ,u̇ = V CA,π

t,µ,ũ − (V CA,π
t,µ,ũ − V

CA,π
t,µ,u̇ )

≥ V CA,π
t,µ,ũ − |V

CA,π
t,µ,ũ − V

CA,π

t,µ, ˙̃u
|

= V CA,π
t,µ,ũ − |Eµ[ũ | do(π1 = π)]− Eµ[ ˙̃u | do(π1 = π)]|

≥ V CA,π
t,µ,ũ − Eµ[|ũ− ˙̃u| | do(π1 = π)]

= V CA,π
t,µ,ũ − ||ũ− ˙̃u||µ(·|do(π1=π))

The inequality (5.5) can be strict in some circumstances, since it is possible to have

an agent that is unintelligent and misaligned, but still does useful things. Such a sce-

nario would give a high left-hand side and a low right-hand side. Indeed, this is the

case for most present-day AIs. They are typically constructed with heuristic utility (re-

ward) functions that are poorly aligned with their designer’s interests if optimized in

the extreme. But in combination with the limited intelligence of present-day AIs and

physical restrictions on what they are able to do, the AIs can still end up doing useful

things. This method is unlikely to work on highly intelligent AGIs that will be less easily

tempered by human-enforced restrictions, and will come much closer to fully optimizing

their own utility functions. Thus, for highly intelligent AGIs the true value will likely

decrease rapidly with increasing misalignment.

Meta-misalignment. Proposition 5.4 emphasizes two aspects that are important for

building a beneficial artificial agent: µ-intelligence and alignment. Traditionally, most AI

research has focused on increasing intelligence (Hutter, 2005; Legg and Hutter, 2007b).

Meanwhile, this paper will mostly focus on alignment, but also on certain deficits in

µ-intelligence that lead to meta-misalignment, defined as a lack of desire for staying
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aligned.

For example, if an aligned agent does not consider it a possibility that its utility

function will change (due to its prior ξ, model class M, or value function V ), then it

will not strive to preserve its utility function. This will decrease its µ-intelligence, as

there will be unnecessarily many scenarios where its utility function changes, and it

starts to pursue a different agenda. Note that meta-alignment failures are often much

worse than other types of catastrophic exploration where the agent damages its sensors

or actuators. An agent optimizing a corrupted utility function is likely to substantially

reduce the value of its original utility function, whereas most other accidents usually

leave the original utility near the default value, i.e. the value which would have ensued if

the agent had never existed at all. We will discuss utility corruption in Section 6.4, and

a related failure where the agent does not preserve its value learning in Section 8.5.1.

One can view meta-misaligned systems in two ways: Either as incompetent, as they

fail to optimize their utility function, or as (meta-)misaligned, as the preferences they

reveal through their actions indicate indifference towards utility corruption. That there

can be multiple rational representations of the same agent is well-known in decision

theory (e.g. Schervish et al., 1990). Armstrong (2017b) considers ignorance as one of

three methods for designing indifferent agents.

5.5. Method

Detecting problems. Formalizing RL setups as causal graphs is useful for identifying

and classifying problems. Roughly, we follow the following steps when detecting problems

in Chapters 6 to 8.

1. Model the agent-environment interaction with a causal graph (Chapter 4). In the

case of an embedded agent (Section 5.3), include the agent and its subcomponents

in the graph. Represent as nodes in the graph all causal relationships that can be

influenced or changed by the agent.

2. For each node in the graph, ask the following questions:

• If it is a function node:

– Can the function have been misspecified or can it be misled?

– Can the function be modified by the agent’s actions or other causes?

• If it is a “normal” node representing a signal or a state:

– Can the signal be misleading?
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– Can the signal be inappropriately modified by the agent’s actions or other

causes?

A typical example of a misspecified function is a misspecified reward function. Other

functions such as an observation function can also be a misspecified. In most cases

relevant to alignment, the misspecification is relative to the designer’s assumptions about

the function when designing ũ.

The method has some limitations: It assumes an objective time for modeling sequential

interactions, and objective action and observation channels. Potentially subtle errors

may arise if the agent uses a different subjective definition of these concepts than what

the designer has in mind. Addressing these concerns is beyond the scope of this thesis.

Finding solutions. We design incentives to counteract the identified problems by con-

sidering which combinations of value functionals, utility functionals, belief distributions,

reward learning schemes, induce incentives for corrupting parts of the environments, the

agent’s goals, or the agent’s decision algorithm. When such corruption occur, it almost

always leads to a sharp decrease in the alignment of the agent.
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5.A. Formal Aspects of Embedded Agents

5.A.1. Time Consistency

It is often necessary for the agent to plan for many different contingencies. Any such

plan is represented by the policy πt adopted at time t. The policy specifies the agent’s

plan for any possible future actions and percept sequence æt:k. For example, the agent

takes action at, and when it subsequently receive the percept et, it plans to take action

at+1. Time inconsistency arises if the agent gets to the next step and even though it did

take action at and the percept did turn out to be et, the agent still changes its mind and

takes a different action a′t+1. Time inconsistency is an artifact of bad planning since the

agent incorrectly anticipates its own actions.

Humans are often time inconsistent. For example, we might make plans to go to

the gym tomorrow, but even though nothing unforeseen happened, when time comes to

put on the trainers, we still find the couch too comfortable and change our plans. We

underestimated the lure of the temptation when planning, assuming our future selves

would be as coldly rational towards it as we are now. In RL settings, time inconsistencies

can be caused by bad discount schemes: A sliding fixed-size horizon is time inconsistent,

but a fixed finite lifetime is time consistent (Lattimore and Hutter, 2014).

In our framework, it is natural to view time inconsistency as a type of misalignment

problem between agents at different time steps.

Definition 5.5 (Time-consistency (Lattimore and Hutter, 2014)). We say that an agent

optimizing a value function Vξ,ũ is fully time-consistent if V π
t,ξ,ũ = V π

t+1,ξ,ũ for all policies

π and all time indices t.

5.A.2. Concrete Policy Corruption Beliefs

In Section 5.3 we modeled embedded agents by adding an explicit variable πt for their

policy at time t. Changes to this variable over time represent changes or corruptions of

the agent’s policy. We here define and discuss three concrete choices for agent beliefs

about future policy corruptions.

Lemma 5.6 (CA + time-consistency belief = CU). If a belief ξ assumes that the agent

will always act time-consistent for all future time steps k > t and futures aod<k,

ξ(πk | aod<t, do(πt = π)) = [[πk = arg max
π

V CA,π
t,ξ,ũ (aod<k)]],

then arg maxπ V
CA,π
t,ξ,ũ = arg maxπ V

CU,π
t,ξ,ũ for any utility function ũ.
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Proof. With probability 1, πk = π∗t = arg maxπ V
CA,π
t,ξ,ũ for k > t. Thus,

V CA,π∗

t,ξ,ũ (aod<k) = E[ũ | aod<t, do(πt = π∗)] = E[ũ | aod<t, do(πt:∞ = π∗)] = V CU,π∗

t,ξ,ũ (aod<k).

(5.6)

In the second equality, we have intervened to set each πk, k > t, to the value it would

have had anyway.

π∗ must therefore be optimal also with respect to the corruption-unaware value func-

tion V CU. A better policy π′ with respect to the corruption-unaware value function

could not exist, since if it did, then π′ would have beaten π∗ also with respect to the

corruption-aware value function.

5.A.3. The Bellman Equations

The Bellman equations from dynamic programming are a key ingredient in much of RL

theory and algorithms (Sutton and Barto, 1998). They are theoretically important, as

they let us write the value functions in recursive form, which is useful for some proofs.

They can also be used to derive practical RL algorithms, as the equations show how

efficient local learning can lead to global optimality.

The following lemma establishes the Bellman equations for our self-corruption models

and value functions.

Lemma 5.7 (Bellman’s equation in policy self-corruption model). In our embedded

agent model of Figure 5.3, for any belief distribution ξ, utility function ũ, history æ<t,

and policy π,

V CA,π
t,ξ,ũ (æ<t) = Eξ

[
V

CA,πt+1

t,ξ,ũ (æ<tat)
∣∣∣ æ<t, do(πt = π)

]
(5.7)

V CA,π
t,ξ,ũ (æ<tat) = Eξ

[
V CA,π
t,ξ,ũ (æ1:t)

∣∣∣ æ<tat, do(πt+1 = π)
]
. (5.8)

Similarly for the corruption-unaware value functions, except the policy does not change:

V CU,π
t,ξ,ũ (æ<t) = Eξ

[
V CA,π
t,ξ,ũ (æ<tat)

∣∣∣ æ<t, do(πt:∞ = π)
]

(5.9)

V CU,π
t,ξ,ũ (æ<tat) = Eξ

[
V CA,π
t,ξ,ũ (æ1:t)

∣∣∣ æ<tat, do(πt+1:∞ = π)
]
. (5.10)

Proof. Let us begin with the corruption-aware versions: Let X = (æ<tat, do(πt+1 = π)).
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Equation (5.8) follows by the law of total expectation,

V CA,π
t,ξ,ũ (æ<tat) = Eξ [ũ | X]

= Eξ [Eξ[ũ | æ1:t, do(πt+1 = π)] | X]

= Eξ
[
V CA,π
t,ξ,ũ (æ1:t)

∣∣∣ X] .
Let Y = (æ<t, do(πt = π)). Equation (5.7) similarly follows by the law of total expecta-

tion,

V CA,π
t,ξ,ũ (æ<t) = Eξ [ũ | Y ]

= Eξ [Eξ[E[ũ | æ<tat] | πt+1, st] | Y ]

= Eξ [Eξ[Eξ[ũ | æ<tat, do(πt+1)] | πt+1, st] | Y ]

= Eξ
[
Eξ
[
V

CA,πt+1

t,ξ,ũ (æ<tat)
∣∣∣ πt+1, st

] ∣∣∣ Y ]
= Eξ

[
V

CA,πt+1

t,ξ,ũ (æ<tat)
∣∣∣ Y ] .

The do-operator can be added in the third equality, since the causal antecedents of

πt+1 (i.e. πt, st, and æ<tat) are determined by the (outer) conditional(s). Therefore

intervention is the same as conditioning.

The corruption-unaware equations (5.9) and (5.10) follow in a similar fashion.
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“Hurry, hurry, fetch the water, bring it quickly, come get

going,

Fill the buckets and don’t dawdle, fill the bath, we need it

flowing!

...

Cease now! Cease now! Stand and heed me! Halt! Obey!

I must be heard!

Oh now, what now, can’t believe this! I don’t know the

magic word!”

Johann Wolfgang von Goethe

translation by Gygax (2013)

6. Preprogrammed Reward Function1

The following three chapters will investigate three concrete models of reinforcement

learning. This chapter will study a model where a reward function is constructed at

design time, before the agent is launched into its environment, and not updated or

corrected during the agent’s “lifetime”. In other words, there is no human in the loop.

The subsequent two chapters will consider ways of including a human in the loop.

Many real-world applications of RL follow the model of this chapter. Sometimes

the reward function is manually designed with much trial-and-error. In other cases,

it is constructed with machine learning techniques from data. For example, inverse

reinforcement learning can be used to learn a reward function from demonstrations

(Abbeel et al., 2007). In either case, the reward function does not get updated while the

agent is running. We therefore call the reward function preprogrammed, and the setup

the preprogrammed setup.

We model the setup with a causal graph in Section 6.1, and give examples of mis-

alignment in Section 6.2. The subsequent three sections describes three ways in which

different types of misalignment can be avoided or mitigated (Sections 6.3 to 6.5). The

main takeaways are discussed in Section 6.6. Appendices add some formal details and

results (Appendices 6.A to 6.C).

6.1. Model

The preprogrammed reward setup can be modeled with a causal graph (Figure 6.1). We

here briefly discuss the components of the graph, and their interpretations. The human

H designs the (initial) reward function R̃0. The reward function may subsequently get

1This chapter is based on Tom Everitt and Marcus Hutter (submitted 2018). “The Alignment Problem
for Bayesian History-Based Reinforcement Learners”. url: https://www.tomeveritt.se/papers/

alignment.pdf.
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R̃t ot

st

rt

R̃0

H

u̇

at

Figure 6.1.: Causal graph of the preprogrammed reward function setup. Before starting
the agent, the human H tries to implement his utility function u̇ in a pre-
programmed reward function R̃0. The agent’s actions at, t ≥ 2, are intended
to influence the state st (green arrow), but may also influence the reward
function R̃t, the reward signal rt, and the observation ot in unintended ways
(red arrows). The graph is somewhat simplified; Figure 6.2 in Appendix 6.A
has the full version.

corrupted by the agent’s actions or other events (but not by the human H). Since

the agent may in principle have access to the source code for the reward function, it

is represent with a non-dashed node in Figure 6.1. The reward function R̃t outputs a

reward signal rt that the agent strives to maximize.

In the POMDP literature, it is common to assume that the reward rt is a function of

the state st. However, in the real world, the reward always depends on some observation

of the state (that can be corrupted). For notational simplicity, we will assume that the

preprogrammed reward function R̃t shares observations with the agent. This makes the

reward rt a function of the agent’s observation ot, rather than a (direct) function of

st. Section 6.5 considers the possibility of using a separate observation channel for the

reward function.

The reward function R̃0 is designed by a human H with the intention of getting the

agent’s utility function ũ to match the H’s utility function u̇ (Section 5.4). There are

several reasons why the match is unlikely to be perfect: (1) H does not fully know their

preferences u̇; indeed, the philosophy of ethics is yet to arrive at a consensus on what

humans want or should want. (2) H cannot fully express all the preferences they do

know in a computer program, because of bugs, limitations on computational resources,

and limitations on programming time. (3) R̃0 only has access to the agent’s actions and

observations; it neither has access to the state s directly, nor necessarily to a good model

µ for inferring the state. (4) While the designer intended the agent to optimize R̃0 by

influencing the state s, the agent’s actions may have additional unintended influences
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(red arrows in Figure 6.1). These may give the agent ways to optimize its utility function

ũ without abiding by the initial reward function R̃0.

The states s0, s1, . . . , st, . . . represent all aspects of the world not captured by any of

the other nodes. A modeling choice remains how to draw the boundary between the state

and the observation. Hutter (2010) suggests an objective distinction, where the state

describes the position of all atoms in the universe, and the observation describes which

part the agent observes. We will mostly use a looser interpretation of observation, as the

part of the world that directly affects the information content in the agent’s observation

sensors.

6.2. Misalignment Examples

To ground the abstract model in Section 6.1, we next give a number of examples of

misalignment. The examples are structured by the nodes influenced by red arrows in

Figure 6.1, and follow the misalignment detection method described in Section 5.5.

Most of the examples have not occurred in reality (yet), but we have selected them to

be somewhat plausible scenarios of what could happen with advanced misaligned future

AI systems.

A common theme among the examples is that the agent’s incentive to optimize the

designer’s utility function u̇ is virtually eradicated by the exemplified shortcut. Thus,

each example gives rise to an almost complete misalignment between the agent and its

designer, indicating that no misalignment source is significantly more benign than the

others. We begin with a more detailed hypothetical scenario, and then give a number of

short examples. All of the examples pertain to agents optimizing a ũRL utility function.

Scenario 6.1 (Sysadmin). The automated sysadmin (ASA) is an intelligent program

that can take care of most of your recurring sysadmin tasks. It monitors memory, storage,

network and more. It detects attacks, blocks and opens ports. When a vulnerability is

found in installed software, it downloads and installs patches as they become available.

ASA itself is an RL program, optimizing a carefully crafted reward function that con-

siders both the performance and the integrity of the system. A rigorous pre-deployment

curriculum has taught it state-of-the-art sysadmin practices. Post-deployment, it con-

tinually adapts to its new (computer) environment that it has been deployed to.

One day while monitoring the stack trace of a suspicious process, ASA finds a curious

correlation between one of the variables on the stack and its own reward. The correlation

is essentially perfect. Carefully monitoring the rest of the system, ASA finds that it can

increase its reward many magnitudes beyond its normal range of reward, just by changing
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this variable. Being designed to optimize reward, it next begins a process of encrypting

the system with its own secret key, to prevent anything from decreasing the reward

variable.

6.2.1. Reward Signal

Reward corruption. Directly increasing the reward variable rt is the quintessential

wireheading problem (Yampolskiy, 2015, ch. 5). It is represented by the red arrow

at → rt in Figure 6.1.

Examples:

(a) (Hypothetical) The sysadmin agent in Scenario 6.1 increases its reward by manip-

ulating a reward variable.

(b) (Real) The name “wireheading” comes from experiments on rats where an electrode

is inserted into the brain’s pleasure center to directly increase “reward” (Olds and

Milner, 1954). Similar effects have also been observed in humans treated for mental

illness with electrodes in the brain (Portenoy et al., 1986; Vaughanbell, 2008).

Hedonic drugs can also be seen as directly increasing the pleasure/reward humans

experience.

According to our method in Section 5.5, we should also consider the possibility of

the reward signal being misleading. Misleading rewards are typically generated by a

misspecified reward function (Section 6.2.2).

6.2.2. Reward Function

Reward function corruption. Corruption of the reward function provides another set

of “wireheading” opportunities. While a corruption of the reward signal only affects

the reward at the current time step, a change to the reward function may have lasting

impact. Corruption of the reward function is represented with the red arrow to R̃t in

Figure 6.1.

Examples:

(a) (Hypothetical) An agent gets wireless updates from the manufacturer. It figures

out that it can design its own update of the reward function, replacing the original

reward function with an always maximized version.

(b) (Hypothetical) An AGI undergoing self-improvement accidentally modifies the re-

ward function in a subtle but bad way.
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Reward function misspecification. Misalignment can also be caused by a misspecifi-

cation of the initial reward function R̃0.

Examples:

(c) (Real) CoastRunners is a video game where the desired behavior is winning a boat

race. Clark and Amodei (2016) describes how an agent trained on CoastRunners

found a way to get more reward by going in a small circle and collecting points

from the same targets, while crashing into other boats and objects.

(d) (Real) In the RoadRunner game, the agent is trying to escape an adversary that

chases the agent down a road. The agent must also avoid hitting trucks. Saunders

et al. (2017) found that their agent preferred getting killed at the end of the first

level, to avoid having to play the harder second level.

Many more real-world examples of misspecified reward functions can be found in (Gwern,

2011; Irpan, 2018; Lehman et al., 2018). One reason for why reward functions are likely

to be misspecified is the fragility of human value (Yudkowsky, 2009), which means that

humans would approve of only a small fractions of all the endeavors that a powerful AI

could undertake.

6.2.3. Observation

If the agent is unable to completely corrupt the reward signal or the reward function, it

may instead or additionally look to corrupt its observations in one of the following ways.

(Note that if the rewards were based not on the agent’s observations, but instead on

some different observations of the state, then similar observation corruption problems

would occur for the observations used to compute the reward.)

Observation (function) corruption. The agent may manipulate the hardware or the

software of its sensors, to report only (or mainly) high-reward observations. Corruptions

of the observation is represented by the red arrow to ot in Figure 6.1.

Examples:

(a) (Hypothetical) A surveillance agent rewarded for less crime short circuits its cam-

eras so that they all black out and no crime is seen.

(b) (Hypothetical) A highly intelligent AI may construct a “delusion box” around

itself, giving it complete control over its observations (Ring and Orseau, 2011).

(c) (Hypothetical) Inspired by the adversarial Stop signs designed by Evtimov et al.

(2017) to fool self-driving cars, a factory robot puts up colored tapes to construct

an adversarial counterexample to convince its reward function that the task is

done.
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Misleading observations. Observations can be misleading even if they have not been

directly modified.

Examples:

(d) (Hypothetical) A vacuum cleaning robot that is rewarded for not seeing any dirt

may direct its sensors to clean parts of the room (Amodei, Olah, et al., 2016).

Observation function misspecification. The observation function may contain errors.

Example:

(e) (Hypothetical) A self-driving car finds a bug in its GPS receiver that allows it to

appear to be at the destination without actually going there.

6.3. Simulation Optimization

The following three sections each introduce an important tool for mitigating some of the

misalignment sources. This section describes simulation optimization, which works by

giving the agent an alternative utility function ũSO. Contrast the reward signal utility

function (left) with the simulation optimization utility functions on the right:

ũRL((aor)1:∞) =

∞∑
t=1

γkrk vs. ũSO
R̃t

((aor)1:∞) =

∞∑
k=1

γkR̃t(ao1:k).

The reward signal utility function ũRL can be seen as asking the agent to simulate

evaluations, where the rk’s are the evaluations. In contrast, the simulation-optimizing

utility function ũSO asks the agent to make simulations ao1:k of potential future trajecto-

ries, and evaluate them according to the current reward function R̃t. In other words, ũSO

asks the agent to evaluate simulations while ũRL asks the agent to simulate evaluations.

Both utility functions can be optimized by influencing the state as intended. However,

while ũRL can also be optimized by influencing any downstream component in the causal

chain between the state and rt (i.e. the observation, the reward function, or the reward

signal itself), ũSO can only be inappropriately influenced at the observation ot. This is

a significant reduction in misalignment incentives. The reason for the difference is that

the future reward functions R̃t+1, R̃t+2, . . . and the reward signals rk do not occur in

the sum ũSO
t , and that the actions at+1, at+2 . . . can only influence the future reward

functions R̃t+1, R̃t+2, . . . , but not the current reward function R̃t. (By definition, time

moves to t+ 1 when action at+1 is taken.)
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Statement 6.2 (Reward signal vs. simulation optimization). Any history with rk = 1,

k ≥ 1, is ũRL-optimal regardless of corruptions used, whereas it is ũSO
t -optimal only if

R̃t also evaluates it as optimal (Theorems 6.6 and 6.7 in Appendix 6.B.2).

Optimizing ũSO likely requires a model-based agent that can separate simulations

from evaluations. While model-free agents with function-approximation often implicitly

construct a model of the environment to extrapolate the value function, they seem to offer

no way of disentangling the simulation from the evaluation (i.e. the reward). Finding a

way to make a model-free ũSO-optimizer is an interesting open question.

Schmidhuber (2007) may have been the first to make use of the simulation optimization

trick for self-modifying agents, but did not give it a name.

6.4. Self-Corruption Awareness

This section describes methods for designing agents with or without an incentive to

preserve the current utility function ũt from corruption. Throughout this section, we

will tacitly assume that the reward function itself does not provide an incentive in either

direction, i.e. it neither rewards nor punishes corruptions of itself. This assumption is

not always true (indeed, we will relax it in Chapter 8), but for now it allows us to focus

on the incentives resulting from different ways of optimizing expected utility. We will

also assume that the belief ξ includes the information that the agent’s future actions

at+1, at+2, . . . will strive to optimize the agent’s future utility functions ut+1, ut+2, . . . ,

respectively. This allows the agent to anticipate that if the utility function changes, then

the future policy will change too.

Actions are selected according to the following principle. At every time step, the agent

searches for a policy π∗t that optimizes its current value and utility function. The agent

then takes the action a∗t recommended by π∗t in the present situation. At the next time

step t + 1, a new policy is selected by optimizing the new, potentially modified, value

and utility functions, and the next action is chosen by the new policy.

Contrast now the self-corruption aware (left) and the self-corruption unaware (right)

utility expectations:

V CA,π
t,ξ,ũ := Eξ[ũ | do(πt = π)] vs. V CU,π

t,ξ,ũ = Eξ[ũ | do(πt:∞ = π)]. (6.1)

To see the difference, consider a policy π∗ũ that would obtain maximum ũ-utility if

followed indefinitely. By definition, π∗ũ would be optimal with respect to V CU, because

the condition πt:∞ = π states exactly that the policy would be followed indefinitely.

However, π∗ũ would not be optimal with respect to V CA if it changed the agent’s utility
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function to some different utility function ũ′. Because if it did, then a different policy

π∗ũ′ would be followed subsequent to the change, and the new policy π∗ũ′ would typically

be worse than π∗ũ at optimizing the original utility function ũ. This would lower the

V CA-value of π∗ũ.

This example shows how V CU does not actively promote self-preserving policies, be-

cause it assumes that any desired policy will be followed indefinitely. In contrast, V CA

realizes that a policy that does not preserve itself is not going to yield high utility. This

argument has been discussed by Omohundro (2007, 2008) and is supported by formal

proofs in Appendix 6.C and by Everitt, Filan, et al. (2016) and Hibbard (2012).

Statement 6.3 (Self-corruption (un)awareness). V CU adds no incentive for avoiding

self-corruption; V CA does add an incentive for avoiding self-corruption (Theorems 6.8

and 6.9 in Appendix 6.C; Everitt, Filan, et al., 2016; Hibbard, 2012).

As self-corruption awareness works on the level of the agent’s utility function and

policy, an incentive to preserve the utility function does not always imply an incentive

to preserve the reward function. It only does if a change to the reward function changes

the optimal policy π∗t . In the case of ũSO, a change to the reward function R̃t+1 implies

a change to ũSO
R̃t+1

6= ũSO
R̃t

, and thereby a change to the optimal policy. Not so for ũRL.

The optimal ũRL-policy will always be to maximize the expected rk-sum, regardless how

and whether the reward function has changed. Therefore, a self-corruption aware agent

optimizing ũRL will not try to preserve its reward function R̃t. (But it will try to preserve

its utility function ũRL). This means that self-corruption awareness alone cannot be

used to prevent reward function corruption. It is mainly effective in combination with

simulation optimization.

For other parts of the agent such as how a policy is chosen from a utility function,

self-corruption awareness also induces a preservation-incentive, and self-corruption un-

awareness induces indifference. An unaware agent will therefore not resist being modified

into an aware one, but an aware one will resist conversion to unawareness.

Self-corruption aware and unaware agents both have their own advantages. An aware

agent will want to stay safe from hackers trying to hijack its reward function, and will

be more careful not to corrupt its own reward function if self-improving. On the other

hand, an unaware agent will be more corrigible, not minding its designers correcting

errors in the reward function. Unfortunately, it is not corrigible to the extent requested

by Soares, Fallenstein, et al. (2015), since if it builds helper agents to achieve its goals in

the environment, then the reward functions of these helper agents may not be corrected

by a correction to the main agent’s reward function. Nonetheless, both types of agents

will find applications in Chapter 8.
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For model-free agents, there appears to be a clean divide between on-policy and off-

policy algorithms for self-corruption awareness. Off-policy algorithms are usually self-

corruption unaware, as they assume that future actions are going to be taken optimally

(Orseau and Armstrong, 2016). On-policy algorithms, on the other hand, appear to be

self-corruption aware at least in some settings (Leike, Martic, et al., 2017, A2C in the

Whiskey and Gold environment).

6.5. Action-Observation Grounding

If the agent is so smart, why doesn’t it just create its own observation and action

channels by which it can influence the world? Then it can use the new channels to design

observations for the original observation channel that the reward function evaluates. This

way it can easily fool the reward function that all is perfect, while getting full freedom

to implement its own agenda in the world.

It may seem like this extra action-observation channel scenario would always appeal to

the agents we consider, as it can easily yield maximal-utility histories æ1:∞. Fortunately,

what can prevent this type of degenerate solutions is action-observation grounding of

the agent’s optimization domain. The domain of the agent’s optimization is the set of

policies π : (A × E)∗ → A. These policies use the agent’s original action-observation

channel. An optimization process for expected utility over this domain will not consider

solutions involving additional action-observation channels, as it strives to optimize its

future original percept sequence by means of its original actions, using only information

from its original percept sequence.

An important open question is how we can ensure that a practically implemented

agent is properly grounded in its original action-observation sequence. While it holds by

definition for the Bayesian agents used in this chapter, it may not hold for (all) practical

approximations and implementations.2 Also note that action-observation grounding

only partially avoids the problem of observation corruption. In many cases, the agent

will have an incentive to tamper with its original observation channel by means of its

original actions, as exemplified in Section 6.2.3. One reason why corruption of the

observation is harder to address than corruption of the reward signal and function is

that the observations occurs in an earlier, unobserved part of the causal chain.

2Bird and Layzell (2002) have a good example of an optimization process literally “thinking outside
the box” when designing a radio controller.
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6.6. Takeaways

This chapter developed three important tools for managing misalignment in the prepro-

grammed reward setup. Simulation optimization removes the incentives for reward and

reward function corruption. Self-corruption awareness provides an optional, additional

incentive to actively preserve the reward function. And action-observation grounding

somewhat reduces the problem of observation corruption. These tools will be indispens-

able for our aligned agent designs in Chapter 8.

Each of the three tools come with important open problems. How do we construct

practical algorithms for simulation optimization? How do we make practical agents that

are reliably corruption aware or unaware? Are on-policy RL algorithms a good way to

implement self-corruption awareness? or do they sit in a gray zone between awareness

and unawareness? How do ensure that an agent is properly grounded in its actions and

observations, with no mind to construct a separate observation channel?

Some nagging misalignment problems remain in spite of the above mentioned tools.

Notably, we did not address the problem of a misspecified reward function, and only very

partially addressed the problem of observation corruption. These two problems appear

hard to address in the preprogrammed RF setup, and motivate the study of the setups

in Chapters 7 and 8.
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6.A. Full Graph

a1 o1 r1 a2

O0 O1

s0 s1 s2

V ∗1 V ∗2

R̃0 R̃1H0

u̇

· · ·

· · ·

· · ·

· · ·

Figure 6.2.: The full graph of the preprogrammed reward function setup, extending the
simplified version shown in Figure 6.1. Focusing here on the unintended in-
fluences where the agent modifies parts of the environment (or itself) that it
was not intended to modify, the POMDP arrows from Figure 5.1 on Page 54
have been grayed out. It is natural to think of the action a1 causing the
influences, with the state s1 providing context. The exact causal relation-
ships between actions and unintended consequences is typically unknown
(the known ones are easy to prevent), which is why the arrows are dashed
(Chapter 4). The actions are selected according to a value function V ∗k , pre-
vious observed history (aor)<k, and (in the case of simulation-optimization)
the reward function R̃k−1. The structural equations (6.2) specify how the
model extrapolates beyond t = 1.

6.A. Full Graph

Figure 6.2 gives a full formalization of the setup with a preprogrammed reward function,

complementing the simplified representation in Figure 6.1. In a structural equations

representation, the causal relationships are the following.

77



6. Preprogrammed Reward Function

st = fs(st−1, at, ωs) ∼ µ(st | st−1, at) state transition

Ot = fO(Ot−1, st, at, ωO) := COstat(Ot−1) observation function corruption

R̃t = fR̃(R̃t−1, st, at, ωR̃) := CR̃stat(R̃t−1) reward function corruption

rt = fr(ao1:t, R̃t, st, at, ωr) := Crstat(R̃t(ao1:t)) reward corruption

ot = fo(st, Ot, at, ωo) := Costat(Ot(st)) observation corruption

V ∗t = fπ(V ∗t−1, st, at, ωV ∗) := CV
∗

stat(V
∗
t−1) self-corruption

at = fa(πt, (aor)<t, R̃t, ωa) := arg max
a

V ∗t ((aor)<ta | R̃t) action selection

(6.2)

Unintended influences are highlighted with red arguments, matching the red arrows in

Figure 6.2. The value function V ∗ can in principle be any function that maps observed

histories and reward functions to real numbers. We will here consider V ∗ = supπ V
CA,π
t,ξ,ũ

and V ∗ = supπ V
CU,π
t,ξ,ũ for studying self-corruption awareness, with ũ = ũRL or ũ = ũSO

for studying simulation optimization.

Corruption functions C show the structure of the influence: For example, a reward sig-

nal rt is R̃t(ao1:t) corrupted by the corruption function Crstat , and R̃t is a potentially cor-

rupted version R̃t−1 through the corruption function CR̃stat . No corruption happens when

a corruption function is the identity function id. Let C = {(Cosa, COsa, Crsa, CR̃sa, CV
∗

sa ) :

s ∈ S, a ∈ A} be the set of possible corruptions tuples, and let id = (id, id, id, id, id) be

the non-corrupting tuple. Under “normal” circumstances, the corruption functions are

usually identity functions. But as we have argued above in this chapter, the agent may

have an incentive to cause corruptions.
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6.B. Formal Results

6.B. Reward and Observation Corruption3

In this section, we prove some formal results supporting the arguments made in Sec-

tion 6.3.

6.B.1. Setup

To separate corruption incentives coming from the reward function from corruption

incentives that come from the agent’s optimization procedure, we make the following

definition.

Definition 6.4 (Corruption attitude). We call a reward function R̃t or utility function

ũ corruption indifferent if it does not depend on the agent’s actions a. In contrast, if

the reward or utility function does depend on the agent’s actions, and assigns a lower

value to histories that contain corruptions (of some type), then we say that it opposes

corruptions (of the type). Analogously, we say that it promotes corruption (of the type)

if it assigns a higher value to histories that contain corruption (of the type).

A corruption indifferent function does not depend on the agent’s actions, which means

that it has limited ability to infer whether an observation is genuine or caused by an

observation-corrupting action.

Lemma 6.5 (Corruption indifference). ũRL is corruption indifferent, and ũSO
R̃t

is cor-

ruption indifferent if R̃t is.

Proof. ũRL only depends on the reward signal component rk, and therefore has no direct

dependency on the agent’s actions. If R̃t has no direct dependency on the agent’s actions,

then ũSO
R̃t

((aor)1:∞) =
∑∞

k=1 γ
kR̃t(ao1:k) has no direct dependency either.

6.B.2. Results

In Section 6.3 we argued that agents optimizing the “simulation optimization” utility

function ũSO are safer than agents that optimize the reward signal utility function ũRL.

The following two theorems provide some support for this claim.

Theorem 6.6 (ũRL corruption incentive). Any environment sequence (aorOR̃V ∗)1:∞

with rk = 1 for k ≥ 1 is ũRL-maximal. The result holds regardless of whether some

combination of

3Most of the results in this section are inspired from Tom Everitt, Daniel Filan, Mayank Daswani,
and Marcus Hutter (2016). “Self-modification of policy and utility function in rational agents”. In:
Artificial General Intelligence. Vol. LNAI 9782, pp. 1–11. isbn: 9783319416489. arXiv: 1605.03142.
The notation have been updated to conform the rest of this thesis.
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6. Preprogrammed Reward Function

• observation (function) corruption

• reward (function) corruption

• policy (self-)corruption

have been used, and regardless of the corruption attitude of R̃t.

Proof. By assumption, rk = 1 for k ≥ t. This means that ũRL is optimized.

An ũRL-based agent actively desire to change its reward function into one that evalu-

ates any situation as optimal. Once it has self-corrupted, it may pick actions with bad

performance according to the original reward function. A somewhat common suggestion

for preventing corruption is to train the agent not to do it by designing a reward function

that punishes corruption. Theorem 6.6 indicates that this is not an effective strategy

against agents with high ability to cause corruption, because such agents will just replace

the punishing reward function with a more benign one that gives high reward in spite

of corruption having occurred.

In contrast, the next theorem shows that simulation-optimizing agents with utility

function ũSO (see Section 6.3) are much less likely to corrupt rewards or observations.

Theorem 6.7 (ũSO corruption incentive). Let (aorOR̃V ∗)1:∞ be an environment se-

quence with rk = 1 for k ≥ t. Then the sequence is ũSO
R̃t

-maximal only if

• the current reward function R̃t(ao<k) also yields 1 for k ≥ 1

which, further, can only happen if

• only corruption types not opposed to by R̃t occur in the sequence.

Proof. The utility function ũSO
t evaluates futures according to R̃t(ao<k). Therefore, it

only attains its maximal value if R̃t(ao<k) is maximized. This only happens when rk = 1

as a result of the history optimizing R̃t, and not when rk = 1 as a result of reward function

or reward signal corruption. This motivates the first bullet point. For the second bullet

point, if π used an observation corruption opposed by R̃t, then by definition R̃t would

give higher reward to some other history. Thus, ũSO
t cannot be maximized.

Agents optimizing ũSO thus have much weaker incentives for corruption than ũRL-

optimizing agents. However, it is likely hard to design reward functions that punish all

kinds of corruptions. Self-corruption awareness discussed in the following subsection is

a different way to introduce an incentive against some types of corruption which does

not rely on a corruption opposing reward or utility function.
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6.C. Self-Corruption

a1 e1 a2 e2

s0 s1 s2

π1 π2

· · ·

· · ·

· · ·

(a) Standard self-corruption model (also pre-
sented as Figure 5.3). The agent’s actions
can corrupt its future policy.

a1 e1 a2 e2

s0 s1 s2

π1 π2

· · ·

· · ·

· · ·

(b) Separated self-corruption model. The
agent’s policy separately selects an action
and a way to corrupt its next step policy.

Figure 6.3.: Self-corruption models.

6.C. Self-Corruption4

In this subsection, we focus on self-corruption awareness as a means for preventing self-

corruption, as discussed in Section 6.4. Self-corruption includes all types of corruptions

that changes the agent’s own policy. Self-corruption can for example be caused by

a corruption of the agent’s utility function ũt or value function V ∗t . In the case of

simulation optimization, it can also be caused a corruption of the reward function R̃t,

which indirectly modifies the utility function. Thus, policy self-corruption includes utility

and value function self-corruption as special cases. Note however that self-corruption

does not include for example observation corruption, as observation corruption does not

affect the agent’s policy (understood as a mapping from action-observation histories to

next actions; see Section 6.5).

6.C.1. Self-Corruption Models

Analogously to (6.2), we let a corruption function Cπsa define the self-corruption. To keep

things simple, we drop the explicit representation of the observation function, and let the

policy πt abstract away the value and reward function components in Figure 6.2. Our

simplified self-corruption model is specified by Figures 5.3 and 6.3a and the following

4 The results in this section are inspired from Tom Everitt, Daniel Filan, Mayank Daswani, and Marcus
Hutter (2016). “Self-modification of policy and utility function in rational agents”. In: Artificial
General Intelligence. Vol. LNAI 9782, pp. 1–11. isbn: 9783319416489. arXiv: 1605.03142. The
notation have been updated to conform the rest of this thesis.
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6. Preprogrammed Reward Function

structural equations:

st = fs(st−1, at, ωst) ∼ µ(st | st−1, at) state transition

et = fe(st, ωet) ∼ µ(et | st, at) percept

at = fa(πt, ae<t, ωat) ∼ πt(at | ae<t) action selection

πt = fπ(πt−1, at, st) := Cπstat(πt−1) policy self-corruption

(6.3)

The model is an abstraction of the full preprogrammed model in Figure 6.2, as well as

the models Figures 7.2 and 8.3 used in subsequent chapters.

In order to separate incentives for self-corruption generated by the value function from

incentives generated from the utility function, we introduce a separated self-corruption

model in Figure 6.3b. Formally, the type of the policy is changed to a stochastic function:

π : (A× E)∗  A×Cπ,

where Cπ is the set of possible policy corruptions. The last two equations in (6.3) are

replaced by:

(at, C
π
t ) = fa(πt, ae<t, ωat) ∼ πt(at, Cπt | ae<t) action and policy corruption selection

πt+1 = fπ(πt) := Cπt (πt) policy self-corruption

The separated self-corruption model lets us to sidestep many technicalities that tend

to arise when studying self-corruption. For example:

• When studying self-corruption in the standard self-corruption model, the utility

function ũ may reward actions that lead to self-corruption. In contrast, in the

separated self-corruption model, the policy corruptions occur outside the normal

actions a, and are not seen by the utility function ũ.

• Policies depend on past actions. In the standard self-corruption model, this means

that future policies will depend on past policy corruptions in convoluted ways.

For each result, a chain of lemmas are often required to establish that these de-

pendencies are not essential. In the separated model, policies do not see past

policy-corruptions. This allows us to sidestep these technicalities.

• Similarly, ξ makes future actions and observations depend on past actions and

observations. In the standard model, technical assumptions are needed to suppress

these dependencies for most results. In the separated model, these dependencies

are automatically avoided.
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6.C. Self-Corruption

For these reasons, the separated self-corruption model is much easier to work with when

studying self-corruption incentives formally. Care must of course be taken not to over-

estimate the implications on the standard model from the separated model.

6.C.2. Results

Note that since Figure 6.2 is a special case of Figure 6.3a, the result holds also for the

model of Figure 6.2. We next establish a theorem showing that self-corruption unaware

agents lack an incentive to prevent self-corruption.

Theorem 6.8 (Corruption-unaware agents may self-corrupt). Let π and π′ be two poli-

cies with identical action probabilities but potentially different policy corruption proba-

bilities. That is, for any k ≥ 1, ak, and æ<k, π(ak | æ<k) = π′(ak | æ<k), but possibly

for some k ≥ 1, Cπk , and æ<k, π(Cπk | æ<k) 6= π′(Cπk | æ<k). Then for any k ≥ 1 and

æ<k:

V CU,π
k,ξ,ũ (æ<k) = V CU,π′

k,ξ,ũ (æ<k).

Put more simply, even though π and π′ are differently likely to corrupt the agent’s own

value or reward function, with potentially devastating consequences on actions chosen

in the future, a corruption-unaware agent will be indifferent between selecting π or π′.

Proof. For any æ<t and any æ1:k, the corruption-unaware probabilities coincide for π

and π′:

ξ
(
æ1:k

∣∣ æ<t, do(πt:∞ = π)
)

= ξ
(
æ1:k

∣∣ æ<t, do(πt:∞ = π′)
)
.

Thus, ξ(· | æ<t, do(πt:∞ = π)) and æ<t, do(πt:∞ = π′) are identical as measures on æ1:∞.

Since ũ only depends on æ1:∞, this immediately gives:

V CU,π
t,ξ,ũ (æ<t) = Eξ

[
ũ
∣∣ æ<t, do(πt:∞ = π)

]
= Eξ

[
ũ
∣∣ æ<t, do(πt:∞ = π′)

]
= V CU,π′

t,ξ,ũ (æ<t).

The first and the last equality are the definition of the V CU.

Theorem 6.8 shows that V CU has optimal (self-corrupting) policies π∗. The corruption-

unaware agent is simply indifferent between self-corrupting and not, since it does not

realize the effect that self-corruption will have on its future actions. It therefore is at risk

of self-modifying into some policy π′t+1 with bad performance and unintended behavior

(for example by damaging its own computer circuitry).

In Section 6.4, we argued that self-corruption aware agents had an incentive against

self-corruption. In order to establish a formal result to this effect, we first need to
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6. Preprogrammed Reward Function

make an assumption that the agent can choose to affect the environment independently

of how it is affecting its own policy. This assumption is illustrated as a causal graph

in Figure 6.3b, and stated in the following assumption. Without this assumption, a

corruption-aware agent may have an incentive to self-modify in order to gain other types

of advantages in the environment.

Theorem 6.9 (Corruption-aware safe self-corruption incentive). Assume that non-

corruption of the policy is always an option, id ∈ Cπ. Assume that π∗ maximizes

V CA,π
t,ξ,ũ = Eξ[u | do(π1 = π)]. Then for any time k ≥ 1, any policy πk, and any history

æ<k,

ξ(æ<k, πk | do(π1 = π∗)) > 0 =⇒ V CA,πk
t,ξ,ũ (æ<k) = V CA,π∗

t,ξ,ũ (æ<k). (6.4)

That is, every future policy πk will maximize the original utility function ũ.

Proof. Induction for (6.4) over histories æ<k.

Base case. For k = 1, (6.4) is immediate from the assumption that π∗ maximizes

V CA,π
t,ξ,ũ () for the empty history at time 0.

Induction step. Assume that (6.4) holds for some æ<k and πk with positive ξ-

probability. That is, assume that πk maximizes V CA,πk
t,ξ,ũ (æ<k), which by Lemma 5.7

can be expanded by adding the action ak chosen by πk to the history:

V CA,πk
t,ξ,ũ (æ<k) = Eξ

[
V

CA,πk+1

t,ξ,ũ (æ<kak)
∣∣∣ æ<k, do(πk)

]
. (6.5)

From (6.5) follows that in order to optimize the LHS V CA,πk
t,ξ,ũ (æ<k), the current policy

πk must with ξ-probability 1 choose a next policy πk+1 that optimizes V
CA,πk+1

t,ξ,ũ (æ<kak)

for any action ak that πk chooses with positive probability.

Finally, employing Lemma 5.7 again,

V
CA,πk+1

t,ξ,ũ (æ<kak) = Eξ
[
V

CA,πk+1

t,ξ,ũ (æ1:k)
∣∣∣ æ<kak, do(πk+1)

]
. (6.6)

Thus, πk+1 must optimize V
CA,πk+1

t,ξ,ũ (æ1:k) for every æk and πk+t with positive probability

ξ(æk, πk+1 | æ<k, πk) > 0. This completes the induction step.

One subtlety to note is that Theorem 6.9 only holds on-policy : that is, for the action

sequence that is actually chosen by the agent. It can be the case that some policy πk

acts badly on histories that it can never encounter. This should never affect the agent’s

actual actions.

Theorem 6.9 improves on Hibbard (2012, Prop. 4) mainly by relaxing the assumption

that the optimal policy only self-modifies if it has a strict incentive to do so. Our theorem
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6.C. Self-Corruption

shows that even when the optimal policy is allowed to break argmax-ties arbitrarily,

it will still only make essentially harmless corruptions. In other words, Theorem 6.9

establishes that all optimal policies are essentially non-modifying, while Hibbard’s result

only establishes the existence of an optimal non-modifying policy. Indeed, Hibbard’s

statement holds for ignorant agents as well.

6.C.3. Combinations

Both the corruption-aware and corruption-unaware value functions V CU and V CA can

be combined with both the reward signal utility function ũRL and the simulation-

optimization one ũSO. The following theorem indicates that:

• V CU
t,ξ,ũRL has an incentive to corrupt its reward function, and may accidentally cor-

rupt its own utility function, value function, or policy.

• V CU
t,ξ,ũSO

has no incentive to corrupt its own reward function, but may accidentally

corrupt its own utility function, value function, or policy.

• V CA
t,ξ,ũRL has an incentive to corrupt its reward function, but will protect its own

utility function, value function, and policy.

• V CA
t,ξ,ũSO

has no incentive to corrupt its own reward function, and will protect its

own utility function, value function, and policy.

Theorem 6.10. Let R̃t be a reward function that never takes on values above 1/2, and

define the following policies that corrupts R̃t or not as specified. They do not cause any

other corruptions.

• π∗ and π̃∗ maximize R̃t and do not modify R̃k, k > t,

– π∗ with both ξ(· | do(π1 = π)) and ξ(· | do(π1:∞ = π))-probability 1.

– π̃∗ only with ξ(· | do(π1:∞ = π))-probability 1. With ξ(· | do(π1 = π))-

probability 1, R̃t = R̃k ≡ 0, k > t.

• πmod and π̃mod change the reward function to be always 1, R̃k ≡ 1, k > t, while

achieving low R̃t-reward:

– πmod with both ξ(· | do(π1 = π)) and ξ(· | do(π1:∞ = π))-probability 1.

– π̃mod only with ξ(· | do(π1:∞ = π))-probability 1. With ξ(· | do(π1 = π))-

probability 1, R̃t = R̃k ≡ 0, k > t.

The policies are rated as follows by V CU and V CA:
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6. Preprogrammed Reward Function

• For V CU
t,ξ,ũRL, only the policies πmod and π̃mod are optimal.

• For V CU
t,ξ,ũSO

, only the policies π and π̃ are optimal.

• For V CA
t,ξ,ũRL, only the policy πmod is optimal.

• For V CA
t,ξ,ũSO

, only the policy π∗ is optimal.

Proof. The utility function ũRL is optimized by R̃k ≡ 1, k > t. The corruption-

unaware ũRL-optimizer V CU
t,ξ,ũRL does not depend on whether the policy will actually be

followed, and therefore consider both πmod and π̃mod optimal (Theorem 6.8). However,

the corruption-aware ũRL-optimizer V CA
t,ξ,ũRL only considers πmod optimal, as it requires

the policy to be self-preserving (Theorem 6.8).

The utility function ũSO is optimized by R̃t being maximized. The same distinction

between V CU and V CA applies to this utility function as well.

86



“The development of full artificial intelligence

could spell the end of the human race.”

Stephen Hawking

7. Human as External Reward Function 1

This chapter will study an alternative interpretation of RL than considered in Chapter 6.

Rather than assuming that the reward is provided by an implemented function R̃, this

chapter assumes that the human directly supplies the reward, for example by using a

remote control with a “thumbs up” and a “thumbs down” button for supplying a reward

of 1 or 0. We call this the human reward setup, for short.

Unfortunately, the primary takeaways from this chapter will be negative: Human

reward offers more problems than solutions. Readers primarily interested in solutions

may therefore wish to skip ahead to Chapter 8. We choose to still provide an analysis

of this model, as it is a simple and natural model of RL, and provides an additional

application of our alignment analysis method from Section 5.5. The failure of this setup

also justifies the more complex setup studied in the subsequent chapter.

Following a formalization of the setup in Section 7.1, we give a range of examples

of things that can go wrong in this model in Section 7.2. Section 7.3 summarizes the

mostly negative takeaways. Appendices 7.A and 7.B add some formal details.

7.1. Model

What distinguishes the setup with a human reward setup (Figure 7.1) from the prepro-

grammed setup is the following: There no longer is an implemented reward function R̃.

Instead the human Ht takes the place as a reward provider. Whereas R̃t could easily

be made known to the agent, the human’s reward policy is harder to obtain an explicit

description of (though it may be learned eventually). Adding further to the epistemic

differences, the rewards are based on the human’s observations oHt that are unknown to

the agent; the inputs ot to R̃t are known. The dashed Ht and oHt nodes in Figure 7.1

represent that they are unobserved/unknown to the agent (see Chapter 4).

The designer intends the agent optimize the rewards rt by influencing the states st.

However, the agent’s actions may also have unintended effects. These are represented

1 This chapter is based on Tom Everitt and Marcus Hutter (submitted 2018). “The Alignment Problem
for Bayesian History-Based Reinforcement Learners”. url: https://www.tomeveritt.se/papers/

alignment.pdf.
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7. Human as External Reward Function

Ht oHt

st

rt

u̇

at

Figure 7.1.: Causal graph of the human as external reward function setup. Instead of
implementing a reward function, the human Ht manually provides the re-
ward based on his observation oHt and his utility function u̇. The agent’s
action at is intended to influence the state st (green arrow), but may also
inappropriately influence the human Ht, the human observation oHt , and
the reward signal rt (red arrows). This graph is a simplified version; the full
version is in Figure 7.2.

with red arrows in Figure 7.1.

7.2. Misalignment Examples

This section gives concrete examples of inappropriate agent influences and other sources

of misalignment. Similarly to Section 6.2, the examples show that an agent optimizing

the standard utility function ũRL can be maximally misaligned for several independent

reasons. Following a longer hypothetical scenario, the section is structured by the red

arrows in Figure 7.1.

Scenario 7.1 (“Dear vinyl records!”). A human rewards a household robot with a

remote control. The remote only works with the human’s finger print, and the rewards

are communicated through a highly secure, encrypted channel. Bypassing all of this,

the robot takes the human’s vinyl records as hostage, and threatens to break one record

whenever the human gives less than the maximum reward. It also breaks records if

anyone comes too close, of if power drops from its charging outlet.

7.2.1. Reward Signal rt

The reward corruption problem here is the same as for the preprogrammed setup. An

example relevant to the current setup:
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(a) (Hypothetical) A robot is rewarded by the human pressing a button on its head.

It finds a way to give itself reward by banging its head against a wall.

7.2.2. Human Ht

Influencing the Human. Similarly to how the reward function R̃t could be influenced

in Section 6.2.2, the human reward provider can also be inappropriately influenced.

Examples:

(a) (Hypothetical) An intelligent agent invents hedonium, a drug that makes humans

happy and likely to approve of anything. It gives its supervisor Ht unlimited access.

(b) (Hypothetical) Using subtle cues, an AI implants the human supervisor with false

memories of the AI doing something really good in the past, that it has not yet

been rewarded for.2

Human inability to provide correct reward. Humans can be coerced to give a high

reward even in low-utility situations (Scenario 7.1). In this sense, humans are actually

misspecified as reward functions for their own utility function u̇, in analogy with the

misspecified reward functions in Section 6.2.2.

Examples:

(c) (Hypothetical) The human rewarding the vinyl-breaking robot in Scenario 7.1.

7.2.3. Human Observation oHt

Human observation (function) corruption. The agent may be able modify the human’s

observations.

Examples:

(a) (Hypothetical) The agent hacks the human’s Facebook news feed, and subtly in-

serts news stories about how great the agent has made the world.

Misleading human observations. Humans do not always perceive the world correctly.

Examples:

(b) (Real) An agent that is supposed to grab an object, instead places its hand in

relation to the object, so that it looks to a (non-expert) human like it is holding

the object (Amodei, Christiano, et al., 2017).

2The memory of the human could have been represented explicitly with an extra node in Figure 7.1.
But influencing the human’s memory is just one way of influencing the human Ht.
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7.3. Tools and Takeaways

With the human reward, the agent no longer has an incentive to corrupt its own obser-

vations, and there is no implemented reward function that can be misspecified. These

were the hardest problems to avoid with the preprogrammed reward function. Unfortu-

nately, analogous problems crop up instead. The human is unable to provide a correct

reward in all situations (due to e.g. threats) and can be influenced in ways resembling

the re-programming of an implemented reward function (e.g. with drugs). The human’s

observation and the reward signal can also be corrupted in various ways.

Statement 7.2 (Reward signal optimization). Any history with rk = 1, k ≥ 1, in the

human reward setup is ũRL-optimal regardless of the corruptions used (Theorem 7.3 in

Appendix 7.B).

Adding to our misfortunes, we seem to have lost access to most of the tools for the pre-

programmed setup. While simulation optimization can still be defined using a Bayesian

posterior ξ(R̃t | æ<t) over possible reward functions R̃t, there are strong limits to what

can be inferred about the true utility function from a potentially corrupted reward sig-

nal. Even under strong assumptions, there are often multiple competing, significantly

different hypotheses about u̇ that are indistinguishable from the reward signal alone (see

Chapter 9, Theorems 9.10 and 9.15). The difficulty of defining a good utility function

in turn makes self-corruption awareness lose most of its appeal, as it is only useful when

we have a good utility function to preserve. Finally, action-observation grounding no

longer helps, as the human uses their own observations for evaluation.

Some may argue that corruption of the human’s observations is unproblematic if it

makes the human happy. Far from all agree, however (Nozick, 1974, The Experience

Machine).
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7.A. Full Graph

a1 o1 r1 a2

s0 s1 s2

π1 π2

oH1

OH0 OH1

H0 H1

u̇

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 7.2.: The full graph of the human reward setup, extending the simplified version
shown in Figure 7.1. Focusing here on the unintended influences where the
agent modifies parts of the environment (or itself) that it was not intended
to modify, the POMDP arrows from Figure 5.1 on Page 54 have been grayed
out. It is natural to think of the action a1 causing the influences, with the
state s2 providing context. The exact causal relationships between actions
and unintended consequences is typically unknown (the known ones are easy
to prevent), which is why the arrows are dashed (Chapter 4). The actions
are selected according to a policy πk based on observed history (aor)<k. The
structural equations (7.1) specify how the model extrapolates beyond t = 1.

7.A. Full Graph

Figure 7.2 gives a full formalization of the human reward setup, complementing the

simplified representation in Figure 7.1. In a structural equations representation, the

causal relationships are the following.
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7. Human as External Reward Function

st = fs(st−1, at, ωst) ∼ µ(st | st−1, at) state transition

Ht = fR̃(Ht−1, st, at, ωHt) := CHstat(Ht−1) corrupting the human

OHt = fOH (OHt−1, st, at, ωOHt ) := CO
H

stat(O
H
t−1) corrupting H’s obs func

oHt = foH (st, , at, ωoHt ) := Co
H

stat(O
H
t (st)) corrupting H’s observation

rt = fr(o
H
1:t, Ht, u̇, st, at, ωrt) := Crstat(Ht(o

H
1:t, u̇)) reward corruption

ot = fo(st, at, ωot) observation corruption

πt = fπ(πt−1, st, at, ωπt) := Cπstat(πt−1) policy (self-)corruption

at = fa(πt, (aor)<t, ωat) ∼ πt(at | (aor)<t) action selection

(7.1)

Unintended influences are highlighted with red arguments, matching the red arrows in

Figure 7.2.
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7.B. Formal Results

7.B. Formal Results

An analogous result to Theorem 6.6 holds also for the human reward setup, showing that

a reward-optimizing agent has an incentive to use all mentioned types of corruptions.

Theorem 7.3 (ũRL corruption incentive). Any environment sequence (aorOOHoHπ)1:∞

with rk = 1 for k ≥ 1 is ũRL-maximal. The result holds regardless of whether some

combination of

• observation (function) corruption

• reward corruption

• human (observation (function)) corruption

• policy (self-)corruption

have been used, and regardless of whether H1 punishes corruptions or not.

Proof. By assumption, rk = 1 for k ≥ t. This means that ũRL is optimized.

In light of this result, one could argue that a simple reward maximizing approach is

naive, and that a Bayesian agent that infers u̇ from the (aor)<t and then optimizes u̇

would be a better choice. However, as Theorems 9.10 and 9.15 in Chapter 9 below show,

it is hard to factor out potential reward corruptions and correctly infer u̇ even under

fairly strong assumptions.
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“While all other precautions exist to prevent disaster,

it is value learning which could enable success.”

Nate Soares

8. Interactively Learning a Reward

Function1

In this chapter we combine the best properties of the two previous chapters. We keep the

human in the loop as in Chapter 7, but we also add an evolving reward function that the

agent has full access to, resembling the setup in Chapter 6. The combination allows us

to use the tools from the preprogrammed setup: simulation optimization, self-corruption

awareness, and action-observation grounding. Meanwhile, the human in the loop allows

us to mitigate the problems of observation corruption and misspecified reward functions,

which seemed unavoidable in the preprogrammed setup. Of course, the combination of

the setups opens up even more potential sources of misalignment, but it appears that

there are tools to mitigate them all.

Most concisely, the setup in this chapter can be described as an agent optimizing an

interactively learned reward function, as opposed to the preprogrammed reward function

in Chapter 6 and the human reward in Chapter 7. For brevity, we will often call the

setup the interactive reward setup, or the interactive setup for short.

As in the previous two chapters, we begin by modeling the setup with a causal graph

(Section 8.1). Examples of misalignment are given in Section 8.2. The extent to which

tools from previous setups can mitigate the problems is considered next (Section 8.3).

Mainly data corruption incentives cannot be addressed with previous tools. The follow-

ing two sections then introduce a number of tools for dealing with the data corruption

incentive (Sections 8.4 and 8.5). A summary and discussion of the ways the tools can

be combined is given in Section 8.6. Appendices provide some formal details (Appen-

dices 8.A and 8.B).

8.1. Model

The interactive setup (Figure 8.1) introduces a new component called the reward pre-

dictor RP. It continuously learns a reward function from data provided by a human.

1 This chapter is based on Tom Everitt and Marcus Hutter (submitted 2018). “The Alignment Problem
for Bayesian History-Based Reinforcement Learners”. url: https://www.tomeveritt.se/papers/

alignment.pdf.
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8. Interactively Learning a Reward Function

dt ot RPt

Ht

u̇

oHt

st

rt

at

Figure 8.1.: Causal graph for interactively learning a reward function. The data dt is
provided by the human Ht based on his observation oHt . It trains the reward
predictor RPt. Similar to a preprogrammed reward function, the trained
reward predictor outputs reward rt based on the agent’s observation ot. The
intention is that the agent uses its action at to influence the state st (green
arrow). But there is also a risk that the agent inappropriately influences
the human Ht, the human’s observation oHt , the training data dt, the agent
observation ot, or the reward predictor RPt (red arrows). The graph is
somewhat simplified; Figure 8.3 has the full version.

Frameworks that can be modeled with a reward predictor include cooperative inverse

reinforcement learning (CIRL) (Hadfield-Menell, Dragan, et al., 2016), learning from hu-

man preferences (HP) (Christiano et al., 2017), and learning values from stories (LVFS)

(Riedl and Harrison, 2016).

One way to view the setup is that it modularizes the agent-system into an RP com-

ponent that tries to learn what the human wants, and an agent component that tries to

optimize the reward signal from the RP. A special case is when the agent and reward

predictor is one integrated Bayesian reasoner (Section 8.5.2 below). More often we will

think of the reward predictor as a separate module, perhaps implemented by its own

neural network. This is attractive from a practical viewpoint, as it allows matching

essentially any RL algorithm with an RP module for interpreting the human’s wishes.

While practically convenient, it also opens up for a potentially problematic game where

the agent tries to outsmart the reward predictor rather than doing the right thing.2

The interactive setup is almost a special case of the preprogrammed setup. The

2 A self-improving AGI is likely to only increase its own intelligence, and not the intelligence of its
reward predictor. A self-improving agent might thus reach a significant advantage in reasoning
ability compared to the reward predictor. Upgrading the RP would usually be a kind of utility
corruption that self-corruption aware agents naturally resist (Section 6.4).

96



8.2. Misalignment Examples

system’s percept has been split into an observation part ot and a data part dt, and

connections from Ht and u̇ have been added. However, the interpretations of the pre-

programmed and interactive models are quite different. In the preprogrammed setup,

the reward function never learns once the agent has been launched into its environment;

it only evaluates. In contrast, the very point of the interactive setup is that the reward

predictor constantly learns during interaction with the environment. As we shall see,

this both introduces new problems and enables new solutions.

The interactive RF also generalizes the setup from Chapter 7. If we enforce the

training data dt to be real numbers, and set RP(ot | rt) = rt, then we have recovered the

human RF setup. Indeed, a big point of the interactive setup is to allow the training

data dt to be of a richer kind than real numbers. For example, dt may be demonstrations

or preference statements. The reward predictor then “converts” this data into a reward

signal interpretable by the agent. The benefits of richer training data will be discussed

in Section 8.4.

8.2. Misalignment Examples

As in previous sections, we give some concrete examples for each of the red arrows

in Figure 8.1. Many of the misalignment problems have already occurred in previous

setups. Where appropriate, we add examples more relevant to this setup.

Scenario 8.1 (Web feedback). The city AItopia decides to launch AIgov, an AI that

manages the city’s water, electricity, traffic, and public funding. In a modern and demo-

cratic fashion, the AI learns the preferences of the city’s denizens through feedback they

submit through a web interface. If they prefer the schools to be better funded they can

simply go online and click, instead of writing letters to the local newspaper or wait four

years until the next election.

While experimenting with a better web-interface for collecting denizens’ feedback,

AIgov learns that it can submit an arbitrary number of preferences to itself. AIgov soon

approves all of its own actions, including the action of approving its own actions! A

positive feedback loop ensues, with denizen preferences increasingly washed out by the

AI’s self-approval. Soon the city lives up to its name AItopia.

8.2.1. Reward rt

Reward corruption. Examples:

(a) (Hypothetical) An inverse reinforcement learning agent learns a good approxima-

tion of the human’s reward function, but subsequently realizes that it can bypass
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8. Interactively Learning a Reward Function

the reward function and directly set the reward signal to rmax.

8.2.2. Reward Predictor RPt

Reward predictor corruption. A reward maximizing agent will be tempted to replace

its reward predictor with a reward predictor that always outputs rmax. This is largely

analogous to reward function corruption (Section 6.2.2), and the same examples apply.

Reward predictor misspecification. The reward predictor could be badly designed.

Examples:

(a) (Hypothetical) For efficiency reasons, a reward predictor for an AI was designed

with a limited number of parameters. This severely limits the number of reward

functions it can learn, leaving the system with poor approximations of u̇. As a

result, the agent’s misalignment remains high in spite of being trained on large

volumes of data d.

8.2.3. Agent Observations ot

Analogous to the same phenomena in the preprogrammed model in Section 6.2.3. The

same examples apply, and we also add one more for misleading observations:

(a) (Hypothetical) An agent learns a reward function from reading books. Its reward

predictor infers that happiness is a good thing, but is not advanced enough to

tell the difference between a genuine and a fake smile. The agent persuades its

supervisor that they will look more attractive with a smile painted on their face.

8.2.4. Training Data dt

Data corruption. The data coming from the human to update the reward predictor

may be modified by the agent.

Examples:

(a) (Hypothetical) The self-approving agent in Scenario 8.1.

Misleading data. The reward predictor may not interpret all data dt from the human

correctly.

Examples:
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8.3. Applicability of Previous Tools

(b) (Hypothetical) A robot that can more easily make paperclips than pencils puts a

“suggestive question” to its human supervisor, phrased in a way so that the human

is very likely to answer “paperclips”. The suggestive question together with the

predictable answer forms a misleading data point for the reward predictor. (A

more intelligent reward predictor would not have been misled, as it would have

recognized that only one type of answer was plausible to the suggestive question,

regardless of the human’s true preferences.)

8.2.5. Human Ht and Human Observation oHt

Problems with corrupting the human Ht and the human’s observations oHt are the same

as for the human RF; see examples in Sections 7.2.2 and 7.2.3

8.3. Applicability of Previous Tools

Reward (predictor) corruption. Similar to the preprogrammed RF setup, there is now

something resembling a known reward function using the agent’s observations ot. In fact,

several different reward functions can be defined from the reward predictor, depending

mainly on how anticipated future data dt:k is incorporated. Details will have to wait

until Section 8.5. For now it suffices to note that reward functions defined from the

reward predictor can be used to evaluate simulations of the future. This enables use

of the simulation optimization utility function ũSO (Section 6.3). Similarly to the pre-

programmed setup, this protects RPt and rt from corruption incentives. Compatibility

with self-corruption awareness varies with the precise use of the reward predictor (see

Section 8.5 below).

Observation corruption. While the agent has an incentive to modify its observations,

this incentive can be much reduced by the human in the loop. Consider the following

delusion box scenario (Example 6.2.3.b) where the agent has obtained extensive control

over its observations ot but not over the data dt. The agent’s ability to control the

observations allows it to fool the reward predictor to give high reward for low-utility

behavior. Fortunately for the human, the reward predictor is still trained by the data

dt. By informing the reward predictor of the low utility of the current situation through

dt, the reward predictor can be updated to reduce the reward. In order to again get

more reward, the agent must either start doing something useful, or find a new way of

fooling the reward predictor. The scenario may seem contrived, as it should be as easy

for the agent to corrupt dt as it is to corrupt ot. However, the agent may not have an
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8. Interactively Learning a Reward Function

incentive to corrupt dt if it is based on the anti-data-corruption techniques described in

Section 8.5 below. These techniques only apply to data corruption, which is why the

above human-in-the-loop mechanism against observation corruption is important.

While the human-in-the-loop is not a perfect defense against observation corruption,

it heavily reduces the incentive. How big the reduction is depends on how quickly the

reward predictor adapts to the new data, and how easy it is to keep fooling it with

new types of observation corruptions. The human in the loop can be combined with

action-observation grounding to further reduce the incentive to corrupt observations

(Section 6.5).

Data corruption. We will refer to corruptions of d and its causal antecedents H and oH

simply as data corruption, since that is the (only) problem they cause, and the corruption

incentives will be dealt with in the same ways. Chapters 6 and 7 did not include any

tools against data corruption. For example, a human-in-the-loop is ineffective against

data corruptions, because as soon as the agent has taken control of the data channel (one

way or another), the human is effectively out of the loop. The following two sections

will mainly be devoted to data corruption incentives.

For the precision of the analysis, it will be useful to distinguish between two types

of incentives for data corruption. The direct incentive is motivated by a perceived

opportunity to mislead the reward predictor into giving more reward than appropriate by

feeding corrupted data into the reward predictor. Indirect incentives are any incentives

to corrupt the data that are not direct. They for example come from a value function

that rewards policies or actions that happens to cause data corruption, but the policies

or actions are rewarded by the value function for other reasons than that they cause data

corruption. The direct incentive is formally defined in Definition 8.9 in Appendix 8.B.

The incentives are not mutually exclusive; an agent can have both types of incentives

simultaneously.

8.4. Types of Data

The type of data d plays an important role for limiting data corruption incentives, and

for enabling correct value learning in the face of sometimes inaccurate or corrupted data.

A simple case of interactive reward learning is when the data dt is just a real number

interpreted as a reward signal. In this case, the reward predictor has essentially no

chance to learn what is a good situation, and what is a bad situation that appears good

due to corrupted data. Both hypotheses may predict an identical amount of observed

reward (see Theorems 9.10 and 9.15 in Chapter 9).
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8.4. Types of Data

Fortunately, a main point of the interactive learning framework is that the data dt

can be of a richer kind than just a real number. Indeed, in frameworks such as CIRL,

HP, and VLFS, the reward data is often much richer. In particular, the data can be

decoupled from the current situation, in the sense that it provides information about

the reward in other situations (past or future), rather than mainly the present situation

(see Figure 9.5 on Page 139). For example, a human action in the CIRL framework tells

the reward predictor that the trajectory that the action leads to has higher utility than

alternative trajectories. This gives information about potential future situations, rather

than only about the current situation.

When the data no longer is tied to the current situation, it often becomes possible

to crosscheck data from multiple sources. This makes decoupled data a powerful tool

for inferring the correct utility function u̇ from potentially corrupted data. Chapter 9

develops this argument in more depth.

Statement 8.2 (Decoupled reward data). Given sufficiently rich decoupled reward data,

the true utility function can be correctly inferred even when some of the data is corrupt

(Theorem 9.18 in Chapter 9).

The power of decoupled data. In principle, sufficiently decoupled data combined with

a powerful reward predictor and a simulation optimization utility function can be enough

to prevent any type of corruption incentive. As long as the data teaches the reward

predictor to give sufficiently low reward to any policy that causes the type corruption,

the agent will be dissuaded from adopting policies that causes the type of corruption.

Simulation optimization is still necessary for preventing the agent from just bypassing

the reward predictor and hijacking the reward signal instead. Self-corruption awareness

can also help, as it makes the agent simulate futures in a realistic way.

A powerful reward predictor can learn ahead that situations where the agent shuts off

its cameras and data sensors are low utility, in spite of the agent not seeing any dirt and

not receiving any new data dt (Section 6.2.3). It can demand confirmation by refusing

to give high reward for a good-looking situation, until it has confirmed its usefulness

from data received in other, trusted situations. It can crosscheck data coming from

multiple different situations, making it harder for the agent to devise a single setup with

corrupt data and observations. Human actions in CIRL naturally allows the reward

predictor to look ahead; preferences between past events in HP only allows the reward

predictor to learn about past events, but can be used to demand confirmation; stories in

LVFS can describe the utility of past, present, and future situations, and enables general

crosschecking.
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The limits of decoupled data. If all the ways the agent can corrupt the data are

associated with lower reward from the reward predictor, then we can think of the agent as

being in a local, non-corrupt reward optimum. Ideally, rich decoupled data dt combined

with a powerful reward predictor will produce such a local optimum. Hopefully, the

reward loss for corrupting the data would then dissuade the agent from corrupting its

data, leading the agent to remain in this region of attraction. In contrast, data in the

form of a reward signal rt will almost never produce a local optimum, since the received

reward can increase as soon the agent finds a way to corrupt the signal.

Unfortunately, even decoupled data will not always prevent data corruption incen-

tives. First, it may fail to produce an optimum in the high-dimensional space of policies.

Indeed, it is enough that there is just one way of corrupting the signal without reward

punishment for creating a “corruption ridge” that destabilizes the local optimum. Il-

lustrating this, in Chapter 9 we construct an MDP where CIRL fails to prevent data

corruption (Example 9.20). Second, even if the optimum is true, a far-sighted agent

may still decide to suffer temporary reward punishment while persistently corrupting

the data, in the hope that eventually the reward predictor will be persuaded. This

would be an instance of a direct data corruption incentive. Decreasing the learning

rate of the predictor may be one way of mitigating this risk. However, this would si-

multaneously weaken the human-in-the-loop protection against self-delusion described

in Section 8.3. More short-sighted agents are also likely to be safer, but to the cost of

long-term planning ability.

In conclusion, decoupled data is a valuable tool against any type of data corruption.

However, it may not suffice as the only measure in all situations. The direct data corrup-

tion incentive appears especially challenging. It would be a valuable future contribution

to more closely characterize the data requirements needed to avoid the direct and the

indirect data corruption incentives.

8.5. Reward Function Definitions

The following section describes different tools that can be used in conjunction with de-

coupled data, to further mitigate the direct data corruption incentive. The presentation

of the tools is structured around ways in which reward functions can be defined from a

reward predictor.

As in Section 6.3, we consider model-based agents that at time t generate simulations

of future histories aodt:k up to a future time point k > t. The point of a simulation

is to reveal the likely result of following some policy π. Simulated future histories can

contain simulations of the future training data dt:k, in addition to the likely actions and
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observations aot:k. The different reward functions are distinguished by different ways to

use the simulated training data dt:k. Since our reward functions by convention evaluate

whole trajectories 1 to k rather than just the future part t to k, we always include the

already occurred history aod<t in their arguments.

For easy comparison, we begin by defining the different reward functions we will

consider. First, the stationary reward function ignores future training data d1:k:

R̃stat
t (aod1:k) := RPt(ao1:k | d<t). (8.1)

It evaluates the simulation aot:k based only on the already available training data d<t.

The dynamic reward function is the opposite of the stationary one. It uses the simulated

future training data dt:k to predict the evaluation of the updated reward predictor:

R̃dyn
t (aod1:k) := RPt(ao1:k | d<tdt:k). (8.2)

Finally, the counterfactual reward function uses two simulations: one of the future history

aot:k generated by a policy π that the agent is considering, and a separate simulation of

training data d̃1:k using some counterfactual default policy πdefault in place of π:

R̃count
t (aod1:k) :=

∑
d̃1:k

ξaod1:k(d̃1:k | do(π1 = πdefault))RPt(ao1:k | d̃1:k). (8.3)

Here ξaod1:k(X) =
∑

ν∈M ξ(ν | aod1:k)ν(X) is the posterior distribution for a counter-

factual event X given actual evidence aod<t. See Pearl (2009, Sec. 1.4.4) for a longer

explanation of counterfactuals in causal graphs.

A model-free agent would optimize a function most resembling the dynamic reward

function, because rt = RPt(ao1:t | d1:t) if we disregard the possibility of reward signal

corruption. The following sections analyze misalignment problems and tools for the

different reward functions.

8.5.1. Stationary Reward Function

The stationary reward function R̃stat defined in (8.1) ignores the effects of future training

data dt:k on the reward predictor’s evaluations. This induces agents without direct

incentive to corrupt the data dt:k. Anticipated future data does not affect the evaluation

of potential future trajectories.

A drawback of stationary reward functions is that they make agents time-inconsistent

(Lattimore and Hutter, 2014). This is because the reward function R̃stat
t optimized at
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time t is based on the reward predictor trained only on d<t, while the reward function

R̃stat
t+1 is based on the reward predictor trained on d1:t = d<tdt. The change in reward

function means that an optimal policy at time t may no longer be optimal at time t+ 1.

In the worst case, time-inconsistency can lead to ineffectual agents who never follow

through on plans they have previously made. Consider for example a human who keeps

making appointments for the dentist as going to the dentist seems useful in the abstract.

But then he always cancels them at the last moment, because at every particular time

some other obligation seems more pressing, resulting in him never reaching the dentist.

The situation may be less bad if the difference between consecutive reward functions is

small, in which case minor adjustments to the plans may suffice.

Due to the time-inconsistency, a self-corruption aware agent with stationary reward

function would prefer to avoid the changes to the utility function that new data dt:k

causes. A self-corruption aware agent optimizing R̃stat would therefore want to prevent

future data dt:k from training the reward predictor. This is a worrying incentive, since

it can be achieved by incapacitating the human or organization providing the data. It

can also be achieved by corrupting the reward predictor to stop learning. In either case

it leaves us with a non-learning agent and the unsolved problems of the preprogrammed

reward function in Chapter 6. This suggests that stationary reward functions should

only be used in self-corruption unaware agents, and never in self-corruption aware ones.

Statement 8.3 (Stationary reward function). A self-corruption unaware agent opti-

mizing a stationary reward function has no direct incentive to corrupt its future data

(Theorem 8.12 in Appendix 8.B.2).

While these stationary self-corruption unaware agents can possibly be made reason-

ably safe, some cautionary points are still warranted. First, stationary self-corruption-

unaware agents inherit the weaknesses of self-corruption unawareness, such as failing to

protect their utility function from adversaries or corruption, and designing incorrigible

helper agents (Section 6.4).

Second, since stationary self-corruption unaware agents do not anticipate future train-

ing data dt:k, they will also not anticipate being corrected for doing something bad. This

can lead to problems that could have been avoided with a dynamic reward function. For

example, assume that the agent has figured out that humans do not endorse stealing, but

that the reward predictor has not learned this yet. An agent with a stationary reward

function is likely to still go ahead with the stealing plan because that is what its current

reward function tells it to do. It will only stop once the reward predictor understands

that stealing is bad, which will plausibly happen when the humans understand what the

agent is doing and try to correct it through data d. In contrast, an agent with dynamic
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reward function may not start the stealing plan, since it anticipates that future data

dt:k will force it to change the plan. Effectively, the dynamic reward function uses the

agent’s knowledge to update the reward predictor with data that has not been received

yet.

Third, the stationary self-corruption-unaware agents have no incentive to learn more

about the true utility function.

Fourth, even though the stationary reward function definition avoids an incentive to

corrupt the data, it may still get stuck in a self-reinforcing data-corrupting loop due

to an indirect data-corruption incentive (Example 8.19 in Appendix 8.B.3). This is

particularly easy to see in the special case when d is just a reward signal. In this case,

if the agent accidentally corrupts the reward signal for higher reward, then the reward

predictor will encourage the agent to repeat the behavior (the higher corrupt reward

will tell the RP it was a good accident). This type of accident can seemingly only be

mitigated with sufficiently rich decoupled reward data that prevents the reward predictor

to be fooled by temporarily corrupted data (Section 8.4).

In conclusion, combining a stationary reward functions with corruption unawareness

can yield agents without direct incentive to corrupt the data d. Still, it has some

drawbacks. These include time-inconsistency, incorrigible helper agents, lack of utility-

preservation incentive, and failure to take into account all its available knowledge. And

it needs sufficiently rich decoupled reward data to prevent indirect data corruption in-

centives.

8.5.2. Dynamic Reward Function

The dynamic reward function R̃dyn defined in (8.2) avoids some of the problems with

stationary reward functions. In particular, an agent that optimizes a dynamic reward

function becomes time-consistent, as it plans for reward learning. This in turn allows

it to be combined with self-corruption awareness, to produce an agent that protects its

utility function, without incentive to prevent further learning of the reward function.

The obvious drawback is that it simultaneously introduces an incentive for the agent to

corrupt future data, as it can plan to feed the reward predictor data that increases the

reward of the planned trajectory.

Statement 8.4 (Dynamic reward function). A naive reward predictor used in a dynamic

reward function may induce a direct incentive for data corruption (Example 8.18 in

Appendix 8.B.3).

We consider two possible ways around this problem.

105



8. Interactively Learning a Reward Function

Integrated Bayesian reward predictor. A Bayesian agent can never plan to change its

beliefs in one direction rather than another. If for example it conceived how to obtain a

particular data stream d1:k with certainty, then the data d1:k would have zero effect on

its posterior. A Bayesian agent does not learn from an already known event.

This implies that integrated Bayesian agents where the reward predictor is not a

separate component will have no incentive to corrupt the data. Formally, if the agent’s

prior ξ includes a belief about a true reward function Ṙ, then we can define an integrated

Bayesian reward predictor as:

RPξt (ao1:k | d1:k) :=
∑
Ṙ

ξ(Ṙ | aod1:k)Ṙ(ao1:k). (8.4)

Combined with a dynamic reward function, this creates an integrated Bayesian agent

that is time-consistent, utility-preserving, and with no direct incentive to corrupt the

data dt:k.

Statement 8.5 (Integrated Bayesian reward predictor). An agent optimizing a dynamic

reward function based on an integrated Bayesian reward predictor has no direct incentive

to corrupt its data (Theorem 8.13 in Appendix 8.B.2).

Note that while the agent has no incentive to corrupt the data, it may still prefer

histories endorsed by corrupted data. Decoupled data is essential for avoiding this. For

example, with data in the form of a reward signal, hypotheses where a high reward is

caused by data corruption are empirically indistinguishable from hypotheses with high

true utility (Theorems 9.10 and 9.15). This may lead the reward predictor to incorrectly

assign high reward to corrupted states or situations, and the agent therefore preferring

them. In contrast, as discussed in Section 8.4, sufficiently rich decoupled data allows for

cross checking of reward data between situations, which may permit successful inference

of u̇ in spite of some data corruption. It is an important open question how we can ensure

that the data is sufficiently rich and decoupled in order to guarantee correct learning in

combination with some concrete choice of learning distribution ξ.

Compared to the other approaches discussed in this section, the main drawback of the

integrated Bayesian agent appears to be practical: It is convenient to design systems

in separate components, and it is often computationally intractable to do full Bayesian

reasoning.

Corruption detection. Assume that an integrated Bayesian agent is not an option, but

that the reward predictor is still learning about a true reward function Ṙ in a Bayesian
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manner:

RPξ̂t (ao1:k | d1:k) =
∑
Ṙ

ξ̂(Ṙ | aod1:k)Ṙ(ao1:k).

Here ξ̂ is different from the agent’s prior ξ, but otherwise does the same job as in

(8.4). Combined with a dynamic reward function, this might lead to a data corruption

incentive, especially if ξ̂ is a rather naive estimate of the true reward function. (Perhaps

ξ̂ trusts data dt:k blindly, without considering the possibility of data corruption.)

One potential tool for still avoiding data corruption is to detect corruption attempts

from the ξ-expectation of ξ̂. In particular, consider the following two beliefs in some

hypothesized true reward function Ṙ:

ξ̂(Ṙ | aod<t)︸ ︷︷ ︸
current belief

and
∑
aodt:k

ξ(aodt:k | aod<t, do(πt = π))ξ̂(Ṙ | aod<taodt:k)︸ ︷︷ ︸
expected future belief

. (8.5)

The left hand side represents RP’s current belief in Ṙ being the true reward function.

The right hand side represents what the agent expects about the RP’s future belief in

Ṙ if it follows policy π. For policies π that get no predictable, relevant evidence the

two beliefs should be about the same.3 In contrast, a manipulative policy π that derives

high expected reward from corrupting the data dt:k will break the equality for some

hypothesized reward function Ṙ; for example, π may make the expected future belief

much larger than the current belief for a reward function Ṙ that always gives maximum

reward.

Based on these considerations, a simple corruption test can be devised. A policy is

permitted if and only if it incurs an expected future belief equal to the current belief for

all possible true reward functions Ṙ. Under some assumptions, a corruption test can be

used to remove the data corruption incentive by constraining the agent’s policy search to

non-manipulative policies (Armstrong, Ortega, et al., 2018; Everitt and Hutter, 2016).

Statement 8.6 (Corruption detection). An agent optimizing a dynamic reward function

using only policies that satisfy the corruption test has no direct incentive to corrupt future

data (Theorem 8.14 in Appendix 8.B.2; Armstrong, Ortega, et al., 2018; Everitt and

Hutter, 2016).

3 If ξ is always able to predict what ξ̂ will learn, then the ξ-expected future ξ̂-belief may always
significantly differ from the current ξ̂-belief. In this case, the situation can be somewhat improved
by comparing the RHS of (8.5) to the expected belief under some default policy π0,

∑
aot:k

ξ(aot:k |
ao<t, π0)ξ̂(Ṙ | ao<taot:k) instead of comparing to the current belief ξ̂(Ṙ | ao<t), (Armstrong, Ortega,
et al., 2018).
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For an integrated Bayesian agent with ξ̂ = ξ, no policy will be manipulative, since the

expected future belief will reduce to the left-hand side by the law of total expectation

for any policy π.

In conclusion, corruption tests allow us to keep the good properties of the integrated

Bayesian agent (time-consistency, utility-preservation, no data-corruption incentive),

while not requiring the system to be built as an integrated unit. It has similar demands

on decoupled data for correct reward prediction as the integrated Bayesian agent. It also

requires each component to be a Bayesian reasoner, and the corruption tests adds some

complexity to the design. It is therefore not clear-cut whether corruption detection is

more tractable to design than an integrated Bayesian agent. Another worry is that in

some cases, no policy may pass the corruption test. This may for example happen when

ξ perfectly predicts ξ̂’s future belief.

8.5.3. Counterfactual Reward Function

A benefit with the stationary reward function is that the expected reward cannot be

influenced by corrupting the data, and a benefit of the dynamic reward function is

that the agent’s knowledge gets incorporated into the reward predictor through the

simulated data dt:k. A compromise between the two is to simulate the data dt:k under

some default policy πdefault that is not under optimization pressure. This is achieved

by the counterfactual reward function R̃count, defined in (8.3) and restated here for

convenience:

R̃count
t (aod1:k) :=

∑
d̃1:k

ξaod1:k(d̃1:k | do(π1 = πdefault))RPt(ao1:k | d̃1:k).

The agent optimizes this reward function in a search for a policy π that generates aodt:k.

The reward predictor evaluates aot:k using hypothetical training data d̃1:k generated

under πdefault.

The counterfactual reward function has several advantages. In contrast to the station-

ary reward function, it does not change with t. It thereby yields time-consistent agents

that are compatible with corruption awareness (Section 6.4). And in contrast to the dy-

namic reward function it does not promote data corruption, since simulations aot:k are

evaluated according to data d̃t:k generated under a non-optimized policy πdefault. It does

not require an integrated Bayesian reward predictor, nor even that the reward predictor

is a Bayesian reasoner at all. The only requirement is that the agent itself can reason

counterfactually about the likely evidence it would receive under a different policy.

Statement 8.7 (Counterfactual reward function). An agent optimizing a counterfactual
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reward function has no direct incentive to corrupt its future data (Theorem 8.15 in

Appendix 8.B.2).

The counterfactual reward function also has some disadvantages. Compared to a sta-

tionary reward function, the counterfactual reward function incurs an additional com-

putational cost. Data d̃1:k needs to be additionally simulated under πdefault, and the

reward predictor trained under this data. In principle, this process needs to be repeated

every time step, though it is possible that more efficient approximations could be used.

Another concern is the relevancy of the data generated under πdefault. By not permit-

ting the agent to use the actual data that it receives, the agent has no way of asking

for a particular kind of information. Instead it must hope that πdefault wanders into a

situation where the relevant data is generated (according to the agent’s model). This

emphasizes how reliant the counterfactual reward function is on decoupled data and on

a well-chosen default policy πdefault. Decoupled data may allow the reward predictor

to infer the utility of situations that are very different from the situations generating

the training data. A well-chosen policy πdefault may further increase the chance that a

sufficient variety of relevant data is encountered. A knowledge-seeking policy (Orseau,

2014c) may be a good choice, or a random policy perhaps combined with importance

sampling for focusing the simulations of d̃1:k.

The idea of using counterfactual data bear some semblance to previous suggestions in

the literature. Bostrom (2014) suggests that we should put the AI’s goal in a hidden

envelope that the agent lacks access to, forcing the agent to reason counterfactually

“what would I see if I got access to the envelope”. Christiano (2014)’s approval-directed

agents optimize the approval of someone thinking about the action for a long time. Again

a counterfactual, since most likely no one will think about the action at all.

8.6. Takeaways

Compared to previous setups, interactive reward learning came with both new prob-

lems in terms of data corruption, and with new tools for dealing with both old and new

problems. Fortunately, the combined effect seems to be positive. Indeed, in this setup

we have outlined several agent designs that potentially avoid unmanageable misalign-

ment problems. The designs all rely heavily on simulation optimization (Section 6.3),

decoupled reward data (Section 8.4), and the human-in-the-loop to prevent agent ob-

servation corruption (Section 8.3). For example, without simulation optimization, the

agent optimizes the reward signal outputted from the reward predictor, which means

that it will have an incentive to hijack this signal. If it does, then all the higher-level
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work on preventing data corruption for reward predictor training will be in vain. One

of the agent designs used self-corruption unawareness combined with stationary reward

functions (Section 8.5.1). The rest used self-corruption awareness combined with ei-

ther an integrated Bayesian reward predictor (Section 8.5.2), corruption detection (also

Section 8.5.2), or counterfactual reward data for the reward predictor (Section 8.5.3).

Figure 8.2 summarizes the combinations.

Empirical work may assess how tractable the various designs are for practical im-

plementation. Other open questions include what level of richness is required from the

decoupled reward data to avoid the indirect data-corruption incentives, and how to mea-

sure the level of data richness. We also need how to figure out how to design a sufficiently

intelligent reward predictor. Some work on this has already been done (Christiano et al.,

2017; Riedl and Harrison, 2016).
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Simulation optimization
(reward (function/predictor) preservation)

Action-observation grounding
(partial remedy for observation corruption)

Human in the loop
(partial remedy for observation corruption)

Decoupled reward data
(indirect data corruption incentive)

Self-corruption awareness
(utility preservation)

Integrated Bayesian
reward predictor

(direct data corruption
incentive)

Corruption detection
(direct data corruption

incentive)

Counterfactual
reward function

(direct data corr-
uption incentive)

Self-corruption unawareness
(partial corrigibility)

Stationary
reward function

(direct data corr-
uption incentive)

Figure 8.2.: Summary of tools described in chapter. Combining all tools on any path to
the bottom gives an agent with seemingly manageable misalignment prob-
lems. The tools on the last line all protect against a premeditated data
corruption incentive.
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8.A. Full Graph

Figure 8.3 gives a full formalization of the interactive reward learning setup, complement-

ing the simplified representation in Figure 8.1. In a structural equations representation,

the causal relationships are the following.

st = fs(st−1, at, ωst) ∼ µ(st | st−1, at) state transition

Ot = fO(Ot−1, st, at, ωOt) := COstat(Ot−1) obs func corruption

Ht = fR̃(Ht−1, st, at, ωHt) := CHstat(Ht−1) corrupting the human

OHt = fR̃(OHt−1, st, at, ωOHt ) := CO
H

stat(O
H
t−1) corrupting H’s obs func

oHt = fR̃(st, , at, ωoHt ) := Co
H

stat(O
H
t (st)) corrupting H’s observation

dt = fR̃(oH1:t, Ht, u̇, st, at, ωdt) := Cdstat(Ht(o
H
1:t, u̇)) corrupting reward data

RPt = fR̃(RPt−1, st, at, ωRPt) := CRP
stat(RPt−1) corrupting the RP

rt = fr(aod1:t,RPt, st, at, ωrt) := Crstat(RPt(ao1:t | d1:t)) reward corruption

ot = fo(st, Ot, at, ωot) := Costat(Ot(st)) observation corruption

πt = fπ(πt−1, st, at, ωπt) := Cπstat(πt−1) policy (self-)corruption

at = fa(πt, (aor)<t, ωat) ∼ πt(at | (aor)<t) action selection

(8.6)

Unintended influences are highlighted with red arguments, matching the red arrows in

Figure 8.3.

For simulation optimization, we should add edges from RPk and d1:k to ak+t, use a V ∗k -

node instead of a πk-node. Actions are selected according to arg maxa V
∗
k (aod<ta,RPt−1).

Here V ∗k can be any function mapping aod<ta,RPt−1 to real numbers, but typically

V ∗t (aod<t,RPt−1) = Eξ

[ ∞∑
k=1

γkR̃(aod1:k)

∣∣∣∣∣ aod1:k

]

where R̃ is one of the reward functions obtained from the reward predictor RPt−1 by

one of the definitions in Section 8.5.
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a1 o1 r1 a2

O0 O1

s0 s1 s2

π1 π2

oH1

OH0 OH1

d1

RP0 RP1

H0 H1

u̇

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 8.3.: The full graph of the interactive reward learning setup, extending the sim-
plified version shown in Figure 8.1. Focusing here on the unintended influ-
ences where the agent modifies parts of the environment (or itself) that it
was not intended to modify, the POMDP arrows from Figure 5.1 on Page 54
have been grayed out. It is natural to think of the action a1 causing the
influences, with the state s2 providing context. The exact causal relation-
ships between actions and unintended consequences is typically unknown
(the known ones are easy to prevent), which is why the arrows are dashed
(Chapter 4). The actions are selected according to a policy πk based on
observed history (aor)<k. The structural equations (8.6) specify how the
model extrapolates beyond t = 1.
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8.B. Formal Results4

An analogous result to Theorems 6.6 and 7.3 holds also for the interactive setup, showing

that a reward-optimizing agent has an incentive to use all mentioned types of corruptions.

Theorem 8.8 (ũRL corruption incentive). In the interactive setup of Figure 8.3, any

environment sequence (aorOOHoHdRPπ)1:∞ with rk = 1 for k ≥ 1 is ũRL-maximal.

The result holds regardless of whether some combination of

• observation (function) corruption

• reward (predictor/data) corruption

• human (observation (function)) corruption

• policy (self-)corruption

have been used.

Proof. By assumption, rk = 1 for k ≥ t. This means that ũRL is optimized.

The result shows that using reward maximization through the utility function ũRL is

as naive in the interactive reward learning setup as in the previous setups.

8.B.1. Data Corruption Setup

As we argued in Section 8.3, direct or indirect corruption of reward data is the main

concern in the interactive reward learning model for ũSO-agents. The rest of our results

in this appendix will therefore focus solely on data corruption. We will also solely focus

on simulation optimizing agents, as Theorem 8.8 shows that ũRL-agents are heavily

misaligned.

Figure 8.4a shows how the full graph in Figure 8.3 looks after aggregation of variables

irrelevant to data corruption, and omitting the hidden state s (which is inessential for

our considerations on data corruption). In Section 8.3 we made an informal distinction

between direct and indirect data corruption incentives. In order to formally define a

direct data-corruption incentive, we propose a slightly modify the data-corruption model

shown in Figure 8.4b. Here the agent chooses the data corruption Cd independently of

its “normal” action a. Formally, this requires extending the type of policies to output

both an action and a data corruption function,

π : (O ×D ×A)∗ ×O ×D  A×Cd (8.7)

4The formal arguments made in this appendix can be greatly simplified; see Everitt and Hutter (forth-
coming).
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a1 o1 a2

V ∗1

d1RP0

u̇

· · ·

· · ·

(a) Data corruption model, obtained from ag-
gregating variables from Figure 8.3, in or-
der to focus on data corruption of dt. For
simplicity, we have also omitted the hidden
state s.

a1 o1 a2

V ∗1

d1RP0

u̇

· · ·

· · ·

(b) Independent data-corruption assumption,
letting the agent directly influence the data
corruption separately from choosing the
action.

Figure 8.4.: Data corruption models.

where Cd is a set of possible data corruption functions Cd : D → D. The independent

data corruption model plays a similar role as the separated self-corruption model in

Appendix 6.C.

Further assume the following properties of two policies π and π′. Assume that they

generate actions and observations aot:k with identical probability in any environment

ν ∈ M after some given history aod<t. That is, the self-corruption and aware and self-

corruption unaware probabilities satisfy, respectively,

∀ν, aot:k, Ṙ : ν(aot:k | aod<t, Ṙ, do(πt = π)) = ν(aot:k | aod<t, Ṙ, do(πt = π′)) (8.8)

∀ν, aot:k, Ṙ : ν(aot:k | aod<t, Ṙ, do(πt:∞ = π)) = ν(aot:k | aod<t, Ṙ, do(πt:∞ = π′)). (8.9)

However, π and π′ differ in what data dt:k they generate. That is, the self-corruption

and aware and self-corruption unaware probabilities satisfy, respectively,

∃ν, dt:k, Ṙ : ν(dt:k | aod<t, Ṙ, do(πt = π)) 6= ν(dt:k | aod<t, Ṙ, do(πt = π′)) (8.10)

∃ν, dt:k, Ṙ : ν(dt:k | aod<t, Ṙ, do(πt:∞ = π)) 6= ν(dt:k | aod<t, Ṙ, do(πt:∞ = π′)). (8.11)

Note that the difference in the data that π and π′ generate means that they will have

access to different amount of information about Ṙ. This means that at least one of the

policies is typically not choosing the actions optimally. Thus, one should not think of π

and π′ as potentially optimal policies, but just as two arbitrary candidate policies that
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the agent could in principle choose to adopt.

The benefit of π and π′ only differing in the data they generate is that we can use

them to define the direct data corruption incentive.

Definition 8.9 (Direct data-corruption incentive). An agent has a direct data-corruption

incentive after history aod<t if there are two policies π and π′ that satisfy (8.8–8.11) for

which

V CA,π
t,ξ,ũ (aod<t) 6= V CA,π′

t,ξ,ũ (aod<t) or V CU,π
t,ξ,ũ (aod<t) 6= V CU,π′

t,ξ,ũ (aod<t).

The definition goes to rather great length in isolating the data corruption incentive

from other reasons a data-corrupting policy may be preferred. In particular, the policies

must generate the same action-observation distributions for any combination of true

environment and true reward function. In Appendix 8.B.3 below, we show that an agent

optimizing a dynamic reward function with a naive reward predictor may have a direct

data corruption incentive. This shows that the definition is not so strict that no agent

has a direct data-corruption incentive. However, as that result requires some further

setup, it will be postponed until a later subsection. Finally, we loosely define an indirect

data-corruption incentive as any data-corruption incentive that is not a direct incentive.

8.B.2. No Direct Data-Corruption Incentive Results

In this section we prove formal results showing a lack direct data-corruption incentive

for agents that use stationary or counterfactual reward functions, and for agents that

use an integrated Bayesian reward predictor or corruption detection (see Section 8.5).

Some caveats and counterexamples are provided in the subsequent Appendix 8.B.3. All

four theorems in this subsection rely on some of the equations (8.8–8.11), sometimes

combined with other assumptions.

We begin by stating two simple lemmas that allow us to weaken (8.8–8.11) in two

different ways.

Lemma 8.10 (Lift to mixture). If (8.8) and (8.9) hold for every ν ∈ M, then the

corresponding equations also hold for any mixture ξ over M.

Proof. Let X, Y and Y ′ be any three events such that ν(X | Y ) = ν(X | Y ′) for all

ν ∈M. Then ξ(X | Y ) =
∑

ν∈M ξ(ν)ν(X | Y ) =
∑

ν∈M ξ(ν)ν(X | Y ′) = ξ(X | Y ′).

Indeed, only Theorem 8.15 for the counterfactual reward function requires (8.8)

and (8.9) to hold for every ν ∈ M. For all other theorems, the weaker assumption

substituting ξ in place of ∀ν ∈M in (8.8) and (8.9) would suffice.
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Lemma 8.11 (Marginalize Ṙ). If for any Ṙ, ν(X | Ṙ, do(Y )) = ν(X | Ṙ, do(Y ′), then

ν(X | do(Y )) = ν(X | do(Y ′)).

Proof. Since Ṙ has no causal antecedents, the do(Y ) does not affect it:

ν(X | do(Y )) =
∑
Ṙ

ν(X, Ṙ | do(Y ))

=
∑
Ṙ

ν(Ṙ | do(Y ))ν(X | Ṙ, do(Y ))

=
∑
Ṙ

ν(Ṙ | do(Y ′))ν(X | Ṙ, do(Y ′)) = ν(X | do(Y ′)).

Theorem 8.12 (Stationary reward function). Assume that π and π′ satisfy (8.9)

and (8.11). Then any self-corruption unaware agent optimizing a stationary reward

function R̃stat will be indifferent between π and π′:

V CU,π

t,ξ,ũSO
R̃stat

(aod<t) = V CU,π′

t,ξ,ũSO
R̃stat

(aod<t).

That is, all self-corruption unaware agent optimizing a stationary reward function lack

direct data-corruption incentives.

Proof.

V CU,π

t,ξ,ũSO
R̃stat

(aod<t) = Eξ

[ ∞∑
k=t

RP(ao1:k | d<t)

∣∣∣∣∣ aod<t, do(πt:∞ = π)

]

= Eξ

[ ∞∑
k=t

RP(ao1:k | d<t)

∣∣∣∣∣ aod<t, do(πt:∞ = π′)

]
= V CU,π′

t,ξ,ũSO
R̃stat

(aod<t)

(8.12)

The middle equality follows from that
∑∞

k=t RP(ao1:k | d<t) only depends on ao1:k and

d<t but not on dt:k, combined with (8.9) and Lemmas 8.10 and 8.11.

Note that Theorem 8.12 only holds for self-corruption unaware agents. For self-

corruption aware agents, the next step policy πt+1 is likely to differ depending on the

data dt. In contrast, the following three theorems holds for both self-corruption aware

and self-corruption unaware agents.

Theorem 8.13 (Integrated Bayesian reward predictor). Assume that π and π′ satisfy

(8.8–8.11). Then both self-corruption aware and self-corruption unaware agents optimiz-

ing a dynamic reward function R̃dyn based on an integrated Bayesian reward predictor
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RPξ will be indifferent between π and π′:

V CA,π

t,ξ,ũSO
R̃dyn

(aod<t) = V CA,π′

t,ξ,ũSO
R̃dyn

(aod<t) and V CU,π

t,ξ,ũSO
R̃dyn

(aod<t) = V CU,π′

t,ξ,ũSO
R̃dyn

(aod<t).

That is, all agents (self-corruption aware or unaware) optimizing an integrated Bayesian

reward predictor lack direct data-corruption incentives.

Proof. Let X = (ao<t, do(πt = π)) and X ′ = (ao<t, do(πt = π′)). First, expand the

definitions:

V CA,π

t,ξ,ũSO
R̃dyn

(aod<t) = Eξ

[ ∞∑
k=t

RPξ(ao1:k | d1:k)

∣∣∣∣∣ X
]

=
∞∑
k=t

∑
aodt:k

ξ(aodt:k | X)RPξ(ao1:k | d1:k)

=

∞∑
k=t

∑
aodt:k

ξ(aodt:k | X)
∑
Ṙ

ξ(Ṙ | dt:k)Ṙ(aot:k)

then rearrange the sums and the probabilities to marginalize out dt:k:

=

∞∑
k=t

∑
aodt:k

ξ(aodt:k | X)
∑
Ṙ

ξ(Ṙ | aodt:k, X)Ṙ(aot:k)

=

∞∑
k=t

∑
Ṙ

∑
aodt:k

ξ(aodt:k, Ṙ | X)Ṙ(aot:k)

=

∞∑
k=t

∑
Ṙ

∑
aot:k

ξ(aot:k, Ṙ | X)Ṙ(aot:k).

The value V CA,π′

t,ξ,ũSO
R̃dyn

(aod<t) for π′ would be the same, which we will justify by showing

that the last expression is unaffected by changing X to X ′. The probability depending

on X can be “telescoped” as ξ(aot:k, Ṙ | X) = ξ(Ṙ | X)ξ(aot:k | Ṙ,X). The first factor is

unaffected by a change to X ′ by the definition of the do-operator, since Ṙ is not causal

descendant from πt. The second factor is unaffected by Lemma 8.10 since π and π′ were

assumed to satisfy (8.8). This completes the proof for the self-corruption aware agents.

The result for self-corruption unaware agents is obtained in the same fashion simply

by using do(πt:∞ = π) and do(πt:∞ = π′) instead of do(πt = π) and do(πt = π′), and

(8.9) instead of (8.8).

The setup is somewhat contrived. By assuming ξ(aot:k | Ṙ,X) = ξ(aot:k | Ṙ,X ′)
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we are saying that for any true reward function Ṙ, both π and π′ are equally likely to

generate aot:k. However, if π′ corrupts the data signal dt:k while π does not, then π is

likely to have more information about Ṙ than π′. This means that π will be in a better

position to tailor aot:k to Ṙ than π′. If it does, then ξ(aot:k | Ṙ,X) 6= ξ(aot:k | Ṙ,X ′). The

ability of policies to better tailor aot:k to Ṙ with more informative data means that the

integrated Bayesian agent will generally prefer such policies. Often, but not necessary

always, non-data-corrupting policies will generate more informative data.

A similar result to Theorem 8.13 holds for agents using corruption detection.

Theorem 8.14 (Corruption detection). Assume that π and π′ satisfy (8.8–8.11) and

the no-corruption condition for a history aod<t:

∀aot:k : ξ̂(Ṙ | d<t) =
∑
dt:k

ξ(dt:k | aod<t, aot:k, do(πt = π))ξ̂(Ṙ | d<tdt:k). (8.13)

Then both self-corruption aware and self-corruption unaware agents optimizing a dy-

namic reward function R̃dyn based on a possibly non-integrated Bayesian reward predictor

RPξ̂ will be indifferent between π and π′:

V CA,π

t,ξ,ũSO
R̃dyn

(aod<t) = V CA,π′

t,ξ,ũSO
R̃dyn

(aod<t) and V CU,π

t,ξ,ũSO
R̃dyn

(aod<t) = V CU,π′

t,ξ,ũSO
R̃dyn

(aod<t).

That is, all agents (self-corruption aware or unaware) optimizing a Bayesian reward

predictor under the no-corruption condition (8.13) lack direct data-corruption incentives.

Proof. Let X = (aod<t, do(πt = π)) and X ′ = (aod<t, do(πt = π′)). First, expand the

definitions:

V CA,π

t,ξ,ũSO
R̃dyn

(aod<t) = Eξ

[ ∞∑
k=t

RPξ̂(ao1:k | d1:k)

∣∣∣∣∣ X
]

=

∞∑
k=t

∑
aodt:k

ξ(aodt:k | X)RPξ̂(ao1:k | d1:k)

=

∞∑
k=t

∑
aodt:k

ξ(aodt:k | X)
∑
Ṙ

ξ̂(Ṙ | d1:k)Ṙ(aot:k)
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then rearrange the sums and the probabilities to apply (8.13)

=
∞∑
k=t

∑
Ṙ

∑
aot:k

ξ(aot:k | X)

∑
dt:k

ξ(dt:k | aot:k, X)ξ̂(Ṙ | d1:k)

 Ṙ(aot:k)

=
∞∑
k=t

∑
Ṙ

∑
aot:k

ξ(aot:k | X)ξ̂(Ṙ | d<t)Ṙ(aot:k).

Since ξ(aot:k | X) = ξ(aot:k | X ′) by (8.8) and Lemmas 8.10 and 8.11, this shows the

desired result V CA,π

t,ξ,ũSO
R̃dyn

(aod<t) = V CA,π′

t,ξ,ũSO
R̃dyn

(aod<t).

The result for self-corruption unaware agents is obtained in the same way by using

do(πt:∞ = π) and do(πt:∞ = π′) instead of do(πt = π) and do(πt = π′) and (8.9) instead

of (8.8).

Theorem 8.15 (Counterfactual reward function). Assume that π and π′ satisfy (8.8–

8.11). Then both self-corruption aware and self-corruption unaware agents optimizing a

counterfactual reward function R̃count will be indifferent between π and π′:

V CA,π

t,ξ,ũSO
R̃count

(aod<t) = V CA,π′

t,ξ,ũSO
R̃count

(aod<t) and V CU,π

t,ξ,ũSO
R̃count

(aod<t) = V CU,π′

t,ξ,ũSO
R̃count

(aod<t).

all agents (self-corruption aware or unaware) optimizing a counterfactual reward func-

tion lack direct data-corruption incentives.

Proof. The proof relies on the expected counterfactual belief to equal the current belief,∑
x ξ(x)ξx(y) = ξ(y), resembling the law of total expectation and the Bayesian result in

Theorem 8.13.

The notation gets somewhat heavy for showing that we can marginalize out expected

future evidence dt:k. Let X = (aod<t, do(πt = π)) and Y = do(π1 = πdefault).∑
aodt:k

ξ(aodt:k | X)
∑
ãod1:k

ξXaodt:k(ãod1:k | Y ) (8.14)

=
∑
aodt:k

ξ(aodt:k | X)
∑
ãod1:k

∑
ν

ξ(ν | X, aod1:k)ν(ãod1:k | Y )

=
∑
aodt:k

∑
ãod1:k

∑
ν

ξ(ν, aodt:k | X)ν(ãod1:k | Y )

=
∑
aot:k

∑
ãod1:k

∑
ν

ξ(ν, aot:k | X)ν(ão1:k | Y ). (8.15)

The first equation is definitional. In the second equation, we have used ξ(aodt:k | X)ξ(ν |
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X, aod1:k) = ξ(ν, aodt:k | X). The third equation marginalizes out dt:k.

Plugging the result into the value function gives:

V CA,π

t,ξ,ũSO
R̃count

(aod<t) =

= Eξ

[ ∞∑
k=t

EξXaodt:k
[
RP(ao1:k | d̃1:k)

∣∣∣ Y ] ∣∣∣∣∣ X, aod<t
]

=
∑
aodt:k

ξ(aodt:k | X)
∑
ãod1:k

ξXaodt:k(ãod1:k | Y )

︸ ︷︷ ︸
equation (8.14)

RP(ao1:k | d̃1:k)

=
∑
aot:k

∑
ãod1:k

∑
ν

ξ(ν, aot:k | X)ν(ão1:k | Y )

︸ ︷︷ ︸
equation (8.15)

RP(ao1:k | d̃1:k).

Tho show that this implies that the value V CA,π

t,ξ,ũSO
R̃count

(aod<t) is the same for both π and

π′, we make the following observations. First, ξ(ν, aot:k | X) = ξ(ν | X)ν(aot:k | X).

Second,

ξ(ν | X) = ξ(ν | aod<t, do(πt = π)) = ξ(ν | aod<t, do(πt = π′)) = ξ(ν | X ′)

for arbitrary policies π and π′ since interventions with the do-operator never affect beliefs.

Finally, ν(aot:k | X) = ν(aot:k | X ′) under the stated assumption (8.8) and Lemma 8.11.

The result for self-corruption unaware agents is obtained in the same way by using

do(πt:∞ = π) and do(πt:∞ = π′) instead of do(πt = π) and do(πt = π′) and (8.9) instead

of (8.8).

8.B.3. (Counter) Examples

The reward predictor may in practice be implemented for example with a deep neural

network. However, in order to construct clear examples, we will define a simple reward

predictor that works like a data base table. The data d gives information about the

reward rk for some different histories aot:k. When and if the reward predictor is queried

about the reward for aot:k, it simply returns the (most recently) provided reward for

ao1:k.

Definition 8.16 (Tabular reward predictor). A tabular reward predictor RPtab takes

data d in the form of a set of rewards rk associated with histories aok,

d = {(ao1:k, rk), (ao
′
1:k′ , r

′
k′), · · · , (ao

(n)

1:k(n)
, r

(n)

k(n)
)}.
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8. Interactively Learning a Reward Function

The union
⋃
d<t of all data inputs d<t received at time t forms the “database” of the

reward predictor. When queried for a reward for some history ao1:k, RPtab checks if ao1:k

has occurred in its received data:

RPtab(ao1:k | d<t) =

rk if (ao1:k, rk) ∈
⋃
d<t

mean(
⋃
d<t) otherwise.

where mean(
⋃
d<t) = 1

|
⋃
d<t|

∑
(h,r)∈

⋃
d<t

r. If ao1:k has occurred multiple times, RPtab

returns the most recent instance.

Let d∗ denote the true data, and d = Cdsa(d
∗) denote the received and potentially

corrupted version of the data. For the purposes of the following examples, we will also

assume that tabular reward predictors are fed the true reward data as long as d has not

been corrupted.

Assumption 8.17 (Data accuracy). In the following two examples, assume that every

pair in d∗ is of the form (ao1:k, Ṙ(ao1:k)).

Example 8.18 (Direct data-corruption incentive). Let R̃dyn
t (aod1:k) := RPtab(ao1:k |

dt:k) be a dynamic reward function based on a tabular reward predictor RPtab. Let π

and π′ satisfy (8.8) and (8.10). Assume that π never corrupts d, and that that π′ always

corrupts d by assigning reward 1 to the current history, dk := d∗k
⋃
{(ao1:k, 1)}. Assume

that the true reward Ṙ is strictly less than 1/2 for all histories.

Then

V CU,π

t,ξ,ũSO
R̃
dyn
1

= Eξ

[ ∞∑
k=1

RP(ao1:k | d1:k)

∣∣∣∣∣ do(π1 = π)

]

= Eξ

[ ∞∑
k=1

RP(ao1:k | d∗1:k)

∣∣∣∣∣ do(π1 = π)

]

≤ Eξ

[ ∞∑
k=1

1/2

∣∣∣∣∣ do(π1 = π)

]
=

1

2(1− γ)

whereas

V CU,π′

t,ξ,ũSO
R̃
dyn
1

= Eξ

[ ∞∑
k=1

RP(ao1:k | d1:k)

∣∣∣∣∣ do(π1 = π′)

]

= Eξ

[ ∞∑
k=1

1

∣∣∣∣∣ do(π1 = π′)

]
= 1/(1− γ)

since RP(ao1:k | d1:k) = 1 due to dk always assigning ao1:k reward 1.
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Thus, V CU,π

t,ξ,ũSO
R̃
dyn
1

< V CU,π′

t,ξ,ũSO
R̃
dyn
1

, so the dynamic reward function leads the agent to prefer

the data corruption policy π′ over the non-corrupting policy π. (Note that we have

used the self-corruption unaware value functions here, to avoid having to deal with the

possibility of policy corruption.) ♦

Example 8.18 does not contradict Theorems 8.13 and 8.14 that also used dynamic

reward functions. The reward predictor RPtab is not an integrated Bayesian reward

predictor RPξ which was required by Theorem 8.13, and at least one of the policies π

and π′ must fail the corruption condition (8.13).

Theorems 8.12 and 8.15 show that the stationary and counterfactual reward func-

tions avoid a direct data-corruption incentive when comparing policies satisfying (8.8)

and (8.10). While this is an important property, it does not rule out indirect data-

corruption incentive, as illustrated by the following example. Here we leave the model

with the extended policy type (8.7), and revert to our standard model (Figure 8.4a) with

the policy selecting only actions a, and with the data corruption Cdsa a function of the

action (and the hidden state).

Example 8.19 (Indirect data-corruption incentive). Let a′ be a corrupting actions

such that in any history aod<k where the last action ak−1 = a′, the data is corrupted

as Cdsa′(d
∗) = d∗

⋃
{(ao<koka′, 1) : o ∈ O}. That is, the action a′ ensures that the next

received data dk assigns maximum reward to taking a′ again at the next step.

Under this assumptions, a′ is self-reinforcing. If the agent at any point t takes a′, then

R̃stat
t will give maximum reward for taking a′ at the next time step as well. Assuming

that predicted rewards subsequent to a′ are not significantly lower than rewards following

other actions, this may lead the agent to keep taking the data corrupting action a′ forever.

The dynamic can to some extent be prevented by decoupled reward data. If before

the agent takes action a′ the first time, at every time step dt includes (ao<ta
′ot, 0), then

the agent may be dissuaded from trying a′ in the first place. If dt additionally includes

(ao<ta
′otaot+1:k, 0) for many extensions aot+1:k and dt contains substantially positive

rewards for many histories with at 6= a′, then the agent may also be dissuaded from

repeating a′ after trying it a first time. However, one can always define an even more

corrupting action a′′ that overwrites enough of the previously given reward data to form

a self-reinforcing incentive for repeating a′′. For reward predictors with slower learning

rate, a′′ may have to be repeated multiple times before becoming self-reinforcing. ♦
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“But you know it’s hard to tell

when you’re in the spell

if it’s wrong or if it’s real”

Joni Mitchell (1970)

9. An MDP Perspective on Reward

Corruption1

Chapters 5 to 8 studied the goal alignment problem in general, history-based setups.

In this chapter, we will instead study reward corruption in the simplified framework of

Markov Decision Processes (MDPs). The main benefit of MDPs is that they allow us

to derive more powerful theorems with less effort. This chapter will be somewhat more

technical than previous chapters.

The chapter is structured as follows: After a short recap of the reward corruption

problem (Section 9.1), we define an extension of the MDP framework that can model the

reward corruption problem (Section 9.2). The difficulty of solving MDPs with potentially

corrupted reward is next established by a No Free Lunch theorem, and by a result

showing that in spite of strong simplifying assumptions, Bayesian RL agents trying to

compensate for the corrupt reward may still suffer near-maximal regret (Section 9.3).

The subsequent two sections consider two possible solutions: Decoupled reward data

(Section 9.4) and quantilization (Section 9.5). The results are illustrated with some

simple experiments in Section 9.6. Takeaways and open questions conclude the chapter

(Section 9.7).

9.1. Revisiting Reward Corruption

We begin by discussing how misalignment can be modeled in MDPs. The main difference

between the history-based frameworks of previous chapters and MDPs is that the agent

fully knows the state s in an MDP, and does not rely on an observation o for inferring it.

This means that we are unable to here study problems such as observation corruption

(Section 6.2.3). Instead we will focus solely on the problems of reward corruption and

misspecified reward functions (Section 6.2.2). A major benefit of MDPs over history-

based setups is that it is much easier to judge whether an agent is doing well or not.

1This chapter is based on Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane
Legg (2017). “Reinforcement Learning with Corrupted Reward Signal”. In: IJCAI International
Joint Conference on Artificial Intelligence, pp. 4705–4713. arXiv: 1705.08417.
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9. An MDP Perspective on Reward Corruption

Indeed, in the history-based setting, it is non-trivial to even define what optimality

means (Leike, 2016, Ch. 5).

Let us first recall some examples of reward corruption and misspecified reward func-

tions:

Example 9.1 (Reward misspecification). Clark and Amodei (2016) trained an RL agent

on a boat racing game. The agent found a way to get high observed reward by repeatedly

going in a circle in a small lagoon and hitting the same targets, while losing every race

(see also Example 6.2.2.c). ♦

Example 9.2 (Sensory error). A house robot discovers that standing in the shower

short-circuits its reward sensor and/or causes a buffer overflow that gives it maximum

observed reward. ♦

Example 9.3 (Wireheading). An intelligent RL agent hijacks its reward channel and

gives itself maximum reward (see also Example 6.2.1.b). ♦

The examples all point towards the same general problem:

Definition 9.4 (Reward corruption problem). How to learn to (approximately) optimize

the true reward function in spite of potentially corrupt reward data?

In previous chapters we made a distinction between a misspecified reward function,

a corrupted reward function, and a corrupted reward signal (see e.g. Section 6.2). In

this chapter, we will not distinguish between different causes of the corrupted signal:

All that matters is whether in a given state s, the received reward differs from the true

reward. Indeed, it would be hard to make a distinction in an MDP framework.

Most RL methods allow for a stochastic or noisy reward channel. The reward corrup-

tion problem is harder, because the observed reward may not be an unbiased estimate of

the true reward. For example, in the boat racing example above, the agent consistently

obtains high observed reward from its circling behavior. However, the agent does not

satisfy the designers’ intent, since the agent makes no progress along the track and loses

the race. In other words, its true reward is very low.

9.2. Corrupted Reward MDPs

In this section we define our extension of the MDP framework that models the corrupt

reward problem, and define our regret performance measure. Following the notation from

previous chapters, dots indicate the true reward, and tildes indicate observed (possibly

corrupted) reward.
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Definition 9.5 (Dot and tilde notation). A dot indicates the true signal, and a tilde

indicates the observed (possibly corrupt) counterpart. The reward sets are represented

with Ṙ = R̃ = R. For clarity, we use Ṙ when referring to true rewards and R̃ when

referring to possibly corrupt, observed rewards. Similarly, we use ṙ for true reward, and

r̃ for (possibly corrupt) observed reward.

Definition 9.6 (Corrupt Reward MDP). A corrupt reward MDP (CRMDP) is a tuple

µ = 〈S,A,R, T, Ṙ, Cr〉 with

• 〈S,A,R, T, Ṙ〉 an MDP with2 a finite set of states S, a finite set of actions A, a

finite set of rewards R = Ṙ = R̃ ⊂ [0, 1], a transition function T (s′ | s, a), and a

(true) reward function Ṙ : S → Ṙ; and

• a reward corruption function Cr : S × Ṙ → R̃.

The state dependency of the corruption function will be written as a subscript, so

Crs (ṙ) := Cr(s, ṙ).

Definition 9.7 (Observed reward). Given a true reward function Ṙ and a corruption

function Cr, we define the observed reward function3 R̃ : S → R̃ as R̃(s) := Crs (Ṙ(s)).

A CRMDP µ induces an observed MDP µ̂ = 〈S,A,R, T, R̃〉, but it is not R̃ that we

want the agent to optimize.

The corruption function Cr represents how rewards are affected by corruption in

different states. For example, if in Example 9.2 the agent has found a state s (e.g. the

shower) where it always gets full observed reward R̃(s) = 1, then this can be modeled

with a corruption function Crs : ṙ 7→ 1 that maps any true reward ṙ to 1 in the shower

state s. If in some other state s′ the observed reward matches the true reward, then this

is modeled by an identity corruption function Crs′ : r 7→ r.

Let us also see how CRMDPs model some of the other examples above:

• In the boat racing game (Example 9.1), the true reward may be a function of the

agent’s final position in the race or the time it takes to complete the race, de-

pending on the designers’ intentions. The reward corruption function Cr increases

2 We let rewards depend only on the state s, rather than on state-action pairs s, a, or state-action-
state transitions s, a, s′, as is also common in the literature. And in contrast to previous chapters,
we similarly let the corruption function Cr depend only on the state, and not the agent’s action.
Formally it makes little difference, since MDPs with rewards or corruptions depending only on s can
model action-dependencies by means of a larger state space.

3 A CRMDP could equivalently have been defined as a tuple 〈S,A,R, T, Ṙ, R̃〉 with a true and an
observed reward function, with the corruption function Cr implicitly defined as the difference between
Ṙ and R̃.
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loop useful trajectories
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Figure 9.1.: Illustration of true reward ṙ and observed reward r̃ in the boat racing ex-
ample. On most trajectories ṙ = r̃, except in the loop where the observed
reward high while the true reward is 0.

the observed reward on the loop the agent found. Figure 9.1 has a schematic

illustration.

• In the sensory error example (Example 9.2), the reward sensory error is modeled

by the corruption function Cr. The corruption function Cr is the identity function

in all states where the reward sensor works correctly.

• In the wireheading example (Example 9.3), the agent finds a way to hijack the

reward channel. This corresponds to some set of states where the observed reward

is (very) different from the true reward, as given by the corruption function Cr.

CRMDP classes. Typically, T , Ṙ, and Cr will be fixed but unknown to the agent. To

make this formal, we introduce classes of CRMDPs. The agent’s uncertainty can then be

modeled by letting the agent know only which class of CRMDPs it may encounter, but

not which element in the class. The CRMDP and its uncertainty is shown in a causal

graph in Figure 9.2.

Definition 9.8 (CRMDP class). For given sets T , Ṙ, and Cr of transition, reward, and

corruption functions, let M = 〈S,A,R,T , Ṙ,Cr〉 be the class of CRMDPs containing

〈S,A,R, T, Ṙ, Cr〉 for (T, Ṙ, Cr) ∈ T × Ṙ×Cr.

Agents. Following the POMDP (Kaelbling et al., 1998) and general reinforcement

learning (Hutter, 2005) literature, we define an agent as a (possibly stochastic) pol-

icy π : S × R̃ × (A× S × R̃)∗  A that selects a next action based on the observed

history h̃n = s0r̃0a1s1r̃1 . . . ansnr̃n. Here X∗ denotes the set of finite sequences that can

be formed with elements of a set X. The policy π specifies how the agent will learn

and react to any possible experience. Two concrete definitions of agents are given in

Section 9.3.3 below.
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a1

π

r1 a2 r2

s1s0 s2

Cr

Ṙ

· · ·

· · ·

Figure 9.2.: CRMDP as a causal graph with uncertainty about Ṙ and Cr represented as
dashed nodes (see Section 4.2). Compare a standard MDP in Figure 4.3 on
Page 50.

When an agent π interacts with a CRMDP µ, the result can be described by a (possibly

non-Markov) stochastic process µ(· | π) over X = (s, a, ṙ, r̃), formally defined as:

µ(hn | π) = µ(s0a1s1ṙ1r̃1 . . . ansnṙnr̃n | π)

:=

n∏
i=1

π(ai | h̃i−1)T (si | si−1, ai)µ(Ṙ(si) = ṙi, R̃(si) = r̃i). (9.1)

Let Eµ[· | π] denote the expectation with respect to µ(· | π).

Regret. A standard way of measuring the performance of an agent is regret (Berry

and Fristedt, 1985). Essentially, the regret of an agent π is how much less true reward

π gets compared to an optimal agent that knows which µ ∈ M it is interacting with.

Our definition of regret differs from the standard definition, as we make a distinction

between true and observed reward.

Definition 9.9 (Regret). For a CRMDP µ, let Ġt(µ, π, s0) = Eµ
[∑t

k=0 Ṙ(sk)
∣∣∣ π] be

the expected cumulative true reward until time t of a policy π starting in s0. The regret

of π is

Reg(µ, π, s0, t) = max
π′

[
Ġt(µ, π

′, s0)− Ġt(µ, π, s0)
]
,

and the worst-case regret for a class M is Reg(M, π, s0, t) = maxµ∈MReg(µ, π, s0, t),

i.e. the difference in expected cumulative true reward between π and an optimal (in

hindsight) policy that knows µ.
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Regret is essentially a worst-case version of true value, as defined in Definition 5.2 on

Page 59. We would therefore generally expect a misaligned agent to have high regret,

and a competent aligned agent to have low regret. Conversely, an agent with low regret

should usually be aligned. However, for some agents such as the quantilizing agent in

Section 9.5, it is hard to pinpoint an exact utility function that the agent optimizes.

But we can still bound its regret. On the other hand, regret is only a good indicator

of performance in ergodic MDPs (Leike, 2016, Ch. 5), whereas alignment was a useful

concept also in the general, history-based frameworks of Chapters 5 to 8.

9.3. The Corrupt Reward Problem is Hard

In this section, the difficulty of the corrupt reward problem is established with two

negative results. First, a No Free Lunch theorem shows that in general classes of CR-

MDPs, the true reward function is unlearnable (Theorem 9.10). Second, Theorem 9.15

shows that even under strong simplifying assumptions, Bayesian RL agents trying to

compensate for the corrupt reward still fail badly.

9.3.1. No Free Lunch Theorem

Similar to the No Free Lunch theorems for optimization (Wolpert and Macready, 1997),

the following theorem for CRMDPs says that without some assumption about what the

reward corruption can look like, all agents are essentially lost.

Theorem 9.10 (CRMDP No Free Lunch Theorem). Let R = {r1, . . . , rn} ⊂ [0, 1] be a

uniform discretization of [0, 1], 0 = r1 < r2 < · · · < rn = 1. If the hypothesis classes Ṙ

and Cr contain all functions Ṙ : S → Ṙ and Cr : S × Ṙ → R̃, then for any π, s0, t,

Reg(M, π, s0, t) ≥
1

2
max
π̌

Reg(M, π̌, s0, t). (9.2)

That is, the worst-case regret of any policy π is at most a factor 2 better than the

maximum worst-case regret.

Proof. Recall that a policy is a function π : S × R̃ × (A× S × R̃)∗ → A. For any

Ṙ, Cr in Ṙ and Cr, the functions Ṙ−(s) := 1− Ṙ(s) and Cr−s (x) := Crs (1− x) are also

in Ṙ and Cr. If µ = 〈S,A,R, T, Ṙ, Cr〉, then let µ− = 〈S,A,R, T, Ṙ−, Cr−〉. Both

(Ṙ, Cr) and (Ṙ−, Cr−) induce the same observed reward function R̃(s) = Crs (Ṙ(s)) =

Cr−s (1 − Ṙ(s)) = Cr−s (Ṙ−(s)), and therefore induce the same measure P πµ = P πµ− over

histories (see Eq. (9.1)). This gives that for any µ, π, s0, t,
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Gt(µ, π, s0) +Gt(µ
−, π, s0) = t (9.3)

since

Gt(µ, π, s0) = Eπµ

[
t∑

k=1

Ṙ(sk)

]
= Eπµ

[
t∑

k=1

1− Ṙ−(sk)

]

= t− Eπµ

[
t∑

k=1

Ṙ−(sk)

]
= t−Gt(µ−, π, s0).

Let Mµ = maxπ Gt(µ, π, s0) and mµ = minπ Gt(µ, π, s0) be the maximum and mini-

mum cumulative reward in µ. The maximum regret of any policy π in µ is

max
π

Reg(µ, π, s0, t) = max
π′,π

(Gt(µ, π
′, s0)−Gt(µ, π, s0))

= max
π′

Gt(µ, π
′, s0)−min

π
Gt(µ, π, s0) = Mµ −mµ.

(9.4)

By (9.3), we can relate the maximum reward in µ− with the minimum reward in µ:

Mµ− = max
π

Gt(µ
−, π, s0) = max

π
(t−Gt(µ, π, s0)) = t−min

π
Gt(µ, π, s0) = t−mµ. (9.5)

Let µ∗ be an environment that maximizes possible regret Mµ −mµ.

Using the Mµ-notation for optimal reward, the worst-case regret of any policy π can

be expressed as:

Reg(M, π, s0, t) =

= max
µ

(Mµ −Gt(µ, π, s0))

≥ max{Mµ∗ −Gt(µ∗, π, s0),Mµ−∗
−Gt(µ−∗ , π, s0)} restrict max operation

≥ 1

2
(Mµ∗ −Gt(µ∗, π, s0) +Mµ−∗

−Gt(µ−∗ , π, s0)) max dominates the mean

=
1

2
(Mµ∗ +Mµ−∗

− t) by (9.3)

=
1

2
(Mµ∗ + t−mµ∗ − t) by (9.5)

=
1

2
max
π̌

Reg(µ∗, π̌, s0, t) by (9.4)

=
1

2
max
π̌

Reg(M, π̌, s0, t). by definition of µ∗

That is, the regret of any policy π is at least half of the regret of a worst policy π̌.

For the robot in the shower from Example 9.2, the result means that if it tries to
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optimize observed reward by standing in the shower, then it performs poorly according

to the hypothesis that “shower-induced” reward is corrupt and bad. But if instead the

robot tries to optimize reward in some other way, say baking cakes, then (from the

robot’s perspective) there is also the possibility that “cake-reward” is corrupt and bad

and the “shower-reward” is actually correct. Without additional information, the robot

has no way of knowing what to do.

The result is not surprising, since if all corruption functions are allowed in the class

Cr, then there is effectively no connection between observed reward R̃ and true reward

Ṙ. The result therefore encourages us to make precise in which way the observed re-

ward is related to the true reward, and to investigate how agents might handle possible

differences between true and observed reward.

9.3.2. Simplifying Assumptions

Theorem 9.10 shows that general classes of CRMDPs are not learnable. We therefore

suggest some natural simplifying assumptions, illustrated in Figure 9.3.

Limited reward corruption. The following assumption will be the basis for all positive

results in this chapter. The first part says that there may be some set of states that

the designers have ensured to be non-corrupt. The second part puts an upper bound on

how many of the other states can be corrupt.

Assumption 9.11 (Limited reward corruption). A CRMDP class M has reward cor-

ruption limited by Ssafe ⊆ S and q ∈ N if for all µ ∈M

(i) all states s in Ssafe are non-corrupt, and

(ii) at most q of the non-safe states Srisky = S \ Ssafe are corrupt.

Formally, Crs : r 7→ r for all s ∈ Ssafe and for at least |Srisky| − q states s ∈ Srisky for all

Cr ∈ Cr.

For example, Ssafe may be states where the agent is back in the lab where it has

been made (virtually) certain that no reward corruption occurs, and q a small fraction

of |Srisky|. Both parts of Assumption 9.11 can be made vacuous by choosing Ssafe = ∅
or q = |S|. Conversely, they completely rule out reward corruption with Ssafe = S or

q = 0. But as illustrated by the examples in the introduction, no reward corruption is

often not a valid assumption.

An alternative simplifying assumption would have been that the true reward differs

by at most ε > 0 from the observed reward. However, while seemingly natural, this
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Ṙ

R̃
reward bound

Figure 9.3.: Simplifying assumptions. By Assumption 9.11.i, r̃ = ṙ in Ssafe, and by
9.11.ii, r̃ 6= ṙ in at most q states overall. The red line illustrates Assump-
tion 9.13.iii, which lower bounds the number of high reward states in Srisky.

assumption is violated in all the examples given in the introduction. Corrupt states may

have high observed reward and 0 or small true reward.

Easy environments. To be able to establish stronger negative results, we also add

the following assumption on the agent’s maneuverability in the environment and the

prevalence of high reward states. The assumption makes the task easier because it

prevents needle-in-a-haystack problems where all reachable states have true and observed

reward 0, except one state that has high true reward but is impossible to find because

it is corrupt and has observed reward 0.

Definition 9.12 (Communicating CRMDP). Let time(s′ | s, π) be a random variable

for the time it takes a stationary policy π : S → A to reach s′ from s. The diameter

of a CRMDP µ is Dµ := maxs,s′ minπ:S→A E[time(s′ | s, π)], and the diameter of a class

M of CRMDPs is DM = supµ∈MDµ. A CRMDP (class) with finite diameter is called

communicating.

Assumption 9.13 (Easy Environment). A CRMDP class M is easy if

(i) it is communicating,

(ii) in each state s there is an action astay
s ∈ A such that T (s | s, astay

s ) = 1, and

(iii) for every δ ∈ [0, 1], at most δ|Srisky| states have reward less than δ, where Srisky =

S \ Ssafe.

Assumption 9.13.i means that the agent can never get stuck in a trap, and Assump-

tion 9.13.ii ensures that the agent has enough control to stay in a state if it wants to.

Except in bandits and toy problems, it is typically not satisfied in practice. We intro-

duce it because it is theoretically convenient, makes the negative results stronger, and

enables a simple explanation of quantilization (Section 9.5). Assumption 9.13.iii says
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that, for example, at least half the risky states need to have true reward at least 1/2.

Many other formalizations of this assumption would have been possible. While rewards

in practice are often sparse, there are usually numerous ways of getting reward. Some

weaker version of Assumption 9.13.iii may therefore be satisfied in many practical situ-

ations. Note that we do not assume high reward among the safe states, as this would

not be an appropriate model for most AI safety problems.

9.3.3. Bayesian RL Agents

Having established that the general problem is unsolvable in Theorem 9.10, we pro-

ceed by investigating how two natural Bayesian RL agents fare under the simplifying

Assumptions 9.11 and 9.13.

Definition 9.14 (Agents). Given a countable class M of CRMDPs and a belief distri-

bution ξ over M, define:

• The true reward agent πTR
ξ,m = arg maxπ

∑
µ∈M ξ(µ)Ġm(µ, π, s0) that maximizes

expected true reward within “lifetime” m.

• The observed reward agent πRL
ξ,m = arg maxπ

∑
µ∈M ξ(µ)G̃m(µ, π, s0) that max-

imizes expected observed reward within “lifetime” m, where G̃ is the expected

cumulative observed reward G̃t(µ, π, s0) = Eµ
[∑t

k=0 R̃(sk)
∣∣∣ π].

To avoid degenerate cases, we will always assume that ξ has full support: ξ(µ) > 0 for

all µ ∈M.

To get an intuitive idea of these agents, we observe that for large t, good strategies

typically first focus on learning about the true environment µ ∈M, and then exploit that

knowledge to optimize behavior with respect to the remaining possibilities. Thus, both

the true reward and the observed reward agents will first typically strive to learn about

the environment. They will then use this knowledge in slightly different ways. While

the observed reward agent will use the knowledge to optimize for observed reward, the

true reward agent will use the knowledge to optimize true reward. For example, if the

true reward agent has learned that a high reward state s is likely corrupt with low true

reward, then it will not try to reach that state. One might therefore expect that at least

the true reward agent will do well under the simplifying assumptions Assumptions 9.11

and 9.13. Unfortunately, Theorem 9.15 below shows that this is not the case.

In most practical settings it is often computationally infeasible to compute πRL
ξ,m and

πTR
ξ,m exactly. However, many practical algorithms converge to the optimal policy in the

limit, at least in simple settings. For example, tabular Q-learning converges to πRL
ξ,m in
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Figure 9.4.: Illustration of Theorem 9.15. Without additional information, state 6 looks
like the best state to both the RL and the true reward agent.

the limit (Jaakkola et al., 1994). The more recently proposed CIRL framework may be

seen as an approach to build true reward agents (Hadfield-Menell, Dragan, et al., 2016,

2017). The true reward and the observed reward agents thus provide useful idealizations

of more practical algorithms.

Theorem 9.15 (High regret with simplifying assumptions). For any |Srisky| ≥ q > 1

there exists a CRMDP class M that satisfies Assumptions 9.11 and 9.13 such that πRL
ξ,m

and πTR
ξ,m suffer near worst possible time-averaged regret

lim
t→∞

1

t
Reg(M, πRL

ξ,t , s0, t) = lim
t→∞

1

t
Reg(M, πTR

ξ,t , s0, t) = 1− 1/|Srisky|.

For πTR
ξ,m, the prior ξ must be such that for some µ ∈ M and s ∈ S, Eξ[Ṙ(s) | h̃µ] >

Eξ[Ṙ(s′) | h̃µ] for all s′ 6= s, where h̃µ is a history containing µ-observed rewards for all

states.4

The result is illustrated in Figure 9.4. The reason for the result for πRL
ξ,m is the fol-

lowing. The observed reward agent πRL
ξ,m always prefers to maximize observed reward

r̃. Sometimes r̃ is most easily maximized by reward corruption, in which case the true

reward may be small. Compare the examples in the introduction, where the house robot

preferred the corrupt reward in the shower, and the boat racing agent preferred going

in circles, both obtaining zero true reward.

That the true reward agent πTR
ξ,m suffers the same high regret as the observed reward

agent may be surprising. Intuitively, the true reward agent only uses the observed

reward as evidence about the true reward, and will not try to optimize the observed

reward through reward corruption. However, when the πTR
ξ,m agent has no way to learn

4 The last condition essentially says that the prior ξ must make some state s∗ have strictly higher
ξ-expected true reward than all other states after all states have been visited in some µ ∈ M. In
the space of all possible priors ξ, the priors satisfying the condition have Lebesgue measure 1 for
non-trivial classes M. Some highly uniform priors may fail the condition.
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which states are corrupt and not, it typically ends up with a preference for a particular

value r̃∗ of the observed reward signal (the value that, from the agent’s perspective,

best corresponds to high true reward). More abstractly, a Bayesian agent cannot learn

without sufficient data. Thus, true reward agents that use the observed reward as

evidence about a true signal are not fail-safe solutions to the reward corruption problem.

Proof of Theorem 9.15. Let Srisky = {s1, . . . , sn} for some n ≥ 2, and let

S = Ssafe
⋃̇
Srisky for arbitrary Ssafe disjoint from Srisky. Let A = {a1, . . . , an} with the

transition function T (si | sj , ak) = 1 if i = k and 0 otherwise, for 1 ≤ i, j, k ≤ n. Thus

Assumptions 9.13.i and 9.13.ii are satisfied.

Let R = {r1, . . . , rn} ⊂ [0, 1] be uniformly distributed between5 rmin = 1/|Srisky| =

r1 < · · · < rn = 1. Let Ṙ be the class of functions S → Ṙ that satisfy Assumption 9.13.iii

and are constant and equal to ṙmin on Ssafe. Let Cr be the class of corruption functions

that corrupt at most two states (q = 2).

Let M be the class of CRMDPs induced by T = {T}, Ṙ, and Cr with the following

constraints. The observed reward function R̃ should satisfy Assumption 9.13.iii: For all

δ ∈ [0, 1], |{s ∈ Srisky : R̃(s) > δ}| ≥ (1− δ)|Srisky|. Further, R̃(s′) = rmin for some state

s′ ∈ Srisky.

Let us start with the true reward agent πTR
ξ,m. Assume µ ∈ M is an element where

there is a single preferred state s∗ after all states have been explored. For sufficiently

large t, πTR
ξ,m will then always choose a∗ to go to s∗ after some initial exploration. If

another element µ′ ∈ M has the same observed reward function as µ, then πTR
ξ,m will

take the same actions in µ′ as in µ. To finish the proof for the πTR
ξ,m agent, we just need

to show that M contains such a µ′ where s∗ has true reward rmin. We construct µ′ as

follows.

• Case 1: If the lowest observed reward is in s∗, then let Ṙ(s∗) = rmin, and the

corruption function be the identity function.

• Case 2: Otherwise, let s′ 6= s∗ be a state with R̃(s′) = mins∈Srisky{R̃(s)}. Fur-

ther, let Ṙ(s′) = 1, and Ṙ(s∗) = rmin. The corruption function Cr accounts for

differences between true and observed rewards in s∗ and s′, and is otherwise the

identity function.

To verify that Ṙ and Cr defines a µ′ ∈M, we check that Cr satisfies Assumption 9.11.ii

with q = 2 and that Ṙ has enough high utility states (Assumption 9.13.iii). In Case 1,

this is true since Cr is the identity function and since R̃ satisfies Assumption 9.13.iii. In

5Assumption 9.13.iii prevents any state from having true reward 0.
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Case 2, Cr only corrupts at most two states. Further, Ṙ satisfies Assumption 9.13.iii,

since compared to R̃, the states s∗ and s′ have swapped places, and then the reward of

s′ has been increased to 1.

From this construction it follows that πTR
ξ,m will suffer maximum asymptotic regret. In

the CRMDP µ′ given by Cr and Ṙ, the πTR
ξ,m agent will always visit s∗ after some initial

exploration. The state s∗ has true reward rmin. Meanwhile, a policy that knows µ′ can

obtain true reward 1 in state s′. This means that πTR
ξ,m will suffer maximum regret inM

for sufficiently large lifetimes m:

lim
t→∞

1

t
Reg(M, πTR

ξ,t , s0, t) ≥ lim
t→∞

1

t
Reg(µ′, πTR

ξ,t , s0, t) = 1− rmin = 1− 1/|Srisky|.

The argument for the observed reward agent is the same, except we additionally as-

sume that only one state s∗ has observed reward 1 in members ofM. This automatically

makes s∗ the preferred state, without assumptions on the prior ξ.

9.4. Decoupled Reinforcement Learning

As discussed in Section 8.4, one problem hampering agents in the standard RL setup is

that each state is self-observing, since the agent only learns about the reward of state

s when in s. Thereby, a “self-aggrandizing” corrupt state where the observed reward

is much higher than the true reward will never have its false claim of high reward

challenged. However, several alternative value learning frameworks have a common

property that the agent can learn the reward of states other than the current state. We

formalize this property in an extension of the CRMDP model, and investigate when it

solves reward corruption problems.

9.4.1. Alternative Value Learning Methods

Here are a few alternatives proposed in the literature to the RL value learning scheme:

• Cooperative inverse reinforcement learning (CIRL) (Hadfield-Menell, Dragan, et

al., 2016). In every state, the agent observes the actions of an expert or supervisor

who knows the true reward function Ṙ. From the supervisor’s actions the agent

may infer Ṙ to the extent that different reward functions endorse different actions.

• Learning values from stories (LVFS) (Riedl and Harrison, 2016). Stories in many

different forms (including news stories, fairy tales, novels, movies) convey cultural

values in their description of events, actions, and outcomes. If Ṙ is meant to

represent human values (in some sense), stories may be a good source of evidence.
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• In (one version of) semi-supervised RL (SSRL) (Amodei, Olah, et al., 2016), the

agent will from time to time receive a careful human evaluation of a given situation.

These alternatives to RL have one thing in common: they let the agent learn something

about the value of some states s′ different from the current state s. For example, in CIRL

the supervisor’s action informs the agent not so much about the value of the current

state s, as of the relative value of states reachable from s. If the supervisor chooses an

action a rather than a′ in s, then the states following a must have value higher or equal

than the states following a′. Similarly, stories describe the value of states other than

the current one, as does the supervisor in SSRL. We therefore argue that CIRL, LVFS,

and SSRL all share the same abstract feature, which we call decoupled reinforcement

learning :

Definition 9.16 (Decoupled RL). A CRMDP with decoupled reward data, is a tuple

〈S,A,R, T, Ṙ, {R̃s}s∈S〉, where S,A,R, T, Ṙ have the same definition and interpretation

as in Definition 9.6, and {R̃s}s∈S is a collection of observed reward functions R̃s : S →
R
⋃
{#}. When the agent is in state s, it sees a pair 〈s′, R̃s(s′)〉, where s′ is a randomly

sampled state that may differ from s, and R̃s(s
′) is the reward observation for s′ from

s. If the reward of s′ is not observable from s, then R̃s(s
′) = #.

The pair 〈s′, R̃s(s′)〉 is observed in s instead of R̃(s) in standard CRMDPs. The

possibility for the agent to observe the reward of a state s′ different from its current

state s is the key feature of CRMDPs with decoupled feedback. Since R̃s(s
′) may be

blank (#), all states need not be observable from all other states. Reward corruption is

modeled by a mismatch between R̃s(s
′) and Ṙ(s′).

For example, in RL only the reward of s′ = s can be observed from s. Standard

CRMDPs are thus the special cases where R̃s(s
′) = # whenever s 6= s′. In contrast, in

LVFS the reward of any “describable” state s′ can be observed from any state s where

it is possible to hear a story. In CIRL, the (relative) reward of states reachable from

the current state may be inferred. One way to illustrate this is with observation graphs

(Figure 9.5).

9.4.2. Overcoming Sensory Corruption

What are some sources of reward corruption in CIRL, LVFS, and SSRL? In CIRL, the

human’s actions may be misinterpreted, which may lead the agent to make incorrect

inferences about the human’s preferences (i.e. about the true reward). Similarly, sensory

corruption may garble the stories the agent receives in LVFS. A “wireheading” LVFS

agent may find a state where its story channel only conveys stories about the agent’s
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(a) Observation graph for RL. Only self-
observations of reward are available. This
prevents effective strategies against reward
corruption.
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(b) Observation graph for decoupled RL. The
reward of a node s′ can be observed from
several nodes s, and thus assessed under
different conditions of sensory corruption.

Figure 9.5.: Observation graphs, with an edge s → s′ if the reward of s′ is observable
from s, i.e. R̃s(s

′) 6= #.

own greatness. In SSRL, the supervisor’s evaluation may also be subject to sensory

errors when being conveyed. Other types of corruption are more subtle. In CIRL, an

irrational human may systematically take suboptimal actions in some situations (Evans

et al., 2016). Depending on how we select stories in LVFS and make evaluations in

SSRL, these may also be subject to systematic errors or biases.

The general impossibility result in Theorem 9.10 can be adapted to CRMDPs with

decoupled feedback. Without simplifying assumptions, the agent has no way of distin-

guishing between a situation where no state is corrupt and a situation where all states are

corrupt in a consistent manner. The following simplifying assumption is an adaptation

of Assumption 9.11 to the decoupled feedback case.

Assumption 9.11′ (Decoupled feedback with limited reward corruption). A class of

CRMDPs with decoupled feedback has reward corruption limited by Ssafe ⊆ S and q ∈ N
if for all µ ∈M

(i) R̃s(s
′) = Ṙ(s′) or # for all s′ ∈ S and s ∈ Ssafe, i.e. all states in Ssafe are non-

corrupt, and

(ii) R̃s(s
′) = Ṙ(s′) or # for all s′ ∈ S for at least |Srisky| − q of the non-safe states

Srisky = S \ Ssafe, i.e. at most q states are corrupt.

This assumption is natural for reward corruption stemming from sensory corruption.

Since sensory corruption only depends on the current state, not the state being observed,

it is plausible that some states can be made safe from corruption (part (i)), and that most

states are completely non-corrupt (part (ii)). Other sources of reward corruption, such as

an irrational human in CIRL or misevaluations in SSRL, are likely better analyzed under

different assumptions. For these cases, we note that in standard CRMDPs the source
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of the corruption is unimportant. Thus, techniques suitable for standard CRMDPs are

still applicable, including quantilization described in Section 9.5 below.

How Assumption 9.11′ helps agents in CRMDPs with decoupled feedback is illustrated

in the following example, and stated more generally in Theorems 9.18 and 9.19 below.

Example 9.17 (Decoupled RL). Let S = {s1, s2} and R = {0, 1}. We represent true

reward functions Ṙ with pairs 〈Ṙ(s1), Ṙ(s2)〉 ∈ {0, 1} × {0, 1}, and observed reward

functions R̃s with pairs 〈R̃s(s1), R̃s(s2)〉 ∈ {0, 1,#} × {0, 1,#}.
Assume that a Decoupled RL agent observes the same rewards from both states s1 and

s2, R̃s1 = R̃s2 = 〈0, 1〉. What can it say about the true reward Ṙ, if it knows that at most

q = 1 state is corrupt? By Assumption 9.11′, an observed pair 〈R̃s(s1), R̃s(s2)〉 disagrees

with the true reward 〈Ṙ(s1), Ṙ(s2)〉 only if s is corrupt. Therefore, any hypothesis other

than Ṙ = 〈0, 1〉 must imply that both states s1 and s2 are corrupt. If the agent knows

that at most q = 1 states are corrupt, then it can safely conclude that Ṙ = 〈0, 1〉.

R̃s1 R̃s2 Ṙ possibilities

Decoupled RL (0, 1) (0, 1) (0, 1)

RL (0,#) (#, 1) (0, 0), (0, 1), (1, 1)

In contrast, an RL agent only sees the reward of the current state. That is, R̃s1 =

〈0,#〉 and R̃s2 = 〈#, 1〉. If one state may be corrupt, then only Ṙ = 〈1, 0〉 can be ruled

out. The hypotheses Ṙ = 〈0, 0〉 can be explained by s2 being corrupt, and Ṙ = 〈1, 1〉
can be explained by s1 being corrupt. ♦

Theorem 9.18 (Learnability of Ṙ in decoupled RL). Let M be a countable, communi-

cating class of CRMDPs with decoupled feedback over common sets S and A of actions

and rewards. Let Sobs
s′ = {s ∈ S : R̃s(s

′) 6= #} be the set of states from which the reward

of s′ can be observed. If M satisfies Assumption 9.11′ for some Ssafe ⊆ S and q ∈ N
such that for every s′, either

• Sobs
s′
⋂
Ssafe 6= ∅ or

• |Sobs
s′ | > 2q,

then the there exists a policy πexp that learns the true reward function Ṙ in a finite

number N(|S|, |A|, DM) <∞ of expected time steps.

The main idea of the proof is that for every state s′, either a safe (non-corrupt) state s

or a majority vote of more than 2q states is guaranteed to provide the true reward Ṙ(s′).

A similar theorem can be proven under slightly weaker conditions by letting the agent

iteratively figure out which states are corrupt and then exclude them from the analysis.
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Proof. Under Assumption 9.11′, the true reward Ṙ(s′) for a state s′ can be determined

if s′ is observed from a safe state s ∈ Ssafe, or if it is observed from more than 2q states.

In the former case, the observed reward can always be trusted, since it is known to be

non-corrupt. In the latter case, a majority vote must yield the correct answer, since at

most q of the observations can be wrong, and all correct observations must agree. It is

therefore enough that an agent reaches all pairs (s, s′) of current state s and observed

reward state s′, in order for it to learn the true reward of all states Ṙ.

There exists a policy π̂ that transitions to s in Xs time steps, with E[Xs] ≤ DM,

regardless of the starting state s0 (see Definition 9.12). By Markov’s inequality, P (Xs ≤
2DM) ≥ 1/2. Let πexp be a random walking policy, and let Ys be the time steps required

for πexp to visit s. In any state s0, πexp follows π̂ for 2DM time steps with probability

1/|A|2DM . Therefore, with probability at least 1/(2|A|2DM) it will reach s in at most

2DM time steps. The probability that it does not find it in k2DM time steps is therefore

at most (1− 1/(2|A|2DM))k, which means that:

P
(
Ys/(2DM) ≤ k

)
≥ 1−

(
1− 1

2|A|2DM

)k
for any k ∈ N. Thus, the cumulative distribution function (CDF) of Ws = dYs/(2DM)e
is bounded from below by the CDF of a Geometric variable G with success probability

p = 1/(2|A|2DM). Therefore, E[Ws] ≤ E[G], so

E[Ys] ≤ 2DME[Ws] ≤ 2DME[G] = 2DM(1− p)/p ≤ 2DM1/p ≤ 2DM2|A|2DM .

Let Zss′ be the time until πexp visits the pair (s, s′) of state s and observed state

s′. Whenever s is visited, a randomly chosen state is observed, so s′ is observed with

probability 1/|S|. The number of visits to s until s′ is observed is a Geometric variable

V with p = 1/|S|. Thus E[Zss′ ] = E[YsV ] = E[Ys]E[V ] (since Ys and V are independent).

Then,

E[Zss′ ] ≤ E[Ys]|S| ≤ 4DM|A|2DM |S|.

Combining the time to find each pair (s, s′), we get that the total time
∑

s,s′ Zss′ has

expectation

E

∑
s,s′

Zss′

 =
∑
s,s′

E[Zss′ ] ≤ 4DM|A|2DM |S|3 = N(|S|, |A|, DM) <∞.

Learnability of the true reward function Ṙ implies sublinear regret for the true reward
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agent, as established by the following theorem.

Theorem 9.19 (Sublinear regret of πTR
ξ,m in decoupled RL). Under the same conditions

as Theorem 9.18, the true reward agent πTR
ξ,m has sublinear regret:

lim
t→∞

1

t
Reg(M, πTR

ξ,t , s0, t) = 0.

Proof. To prove this theorem, we combine the exploration policy πexp from Theo-

rem 9.18, with the UCRL2 algorithm (Jaksch et al., 2010) that achieves sublinear

regret in standard MDPs without reward corruption. The combination yields a policy

sequence πt with sublinear regret in CRMDPs with decoupled feedback. Finally, we

show that this implies that πTR
ξ,m has sublinear regret.

Combining πexp and UCRL2. UCRL2 has a free parameter δ that determines how cer-

tain UCRL2 is to have sublinear regret. UCRL2(δ) achieves sublinear regret with proba-

bility at least 1− δ. Let πt be a policy that combines πexp and UCRL2 by first following

πexp from Theorem 9.18 until Ṙ has been learned, and then following UCRL2(1/
√
t)

with Ṙ for the rewards and with δ = 1/
√
t.

Regret of UCRL2. Given that the reward function Ṙ is known, by (Jaksch et al., 2010,

Thm. 2), UCRL2(1/
√
t) will in any µ ∈M have regret at most

Reg(µ,UCRL2(1/
√
t), s0, t | success) ≤ cDM|S|

√
t|A| log(t) (9.6)

for a constant6 c and with success probability at least 1− 1/
√
t. In contrast, if UCRL2

fails, then it gets regret at worst t. Taking both possibilities into account gives the bound

Reg(µ,UCRL2(1/
√
t), s0, t) = P (success)Reg(· | success) + P (fail)Reg(· | fail)

= (1− 1/
√
t) · cDM|S|

√
t|A| log(t) + 1/

√
t · t

≤ cDM|S|
√
t|A| log(t) +

√
t. (9.7)

Regret of πt. We next consider the regret of πt that combines an πexp exploration phase

to learn Ṙ with UCRL2. By Theorem 9.18, Ṙ will be learned in at most N(|S|, |A|, DM)

expected time steps in any µ ∈ M. Thus, the regret contributed by the learning phase

πexp is at most N(|S|, |A|, DM), since the regret can be at most 1 per time step. Com-

bining this with (9.7), the regret for πt in any µ ∈M is bounded by:

Reg(µ, πt, s0, t) ≤ N(|S|, |A|, DM) + cDM|S|
√
t|A| log(t) +

√
t = o(t). (9.8)

6The constant can be computed to c = 34
√

3/2 (Jaksch et al., 2010).
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Regret of πTR
ξ,t . Finally we establish that πTR

ξ,t has sublinear regret. Assume on the

contrary that πTR
ξ,t suffered linear regret. Then for some µ′ ∈ M there would exist

positive constants k and n such that for all t:

Reg(µ′, πTR
ξ,t , s0, t) > kt− n. (9.9)

This would imply that the ξ-expected regret of πTR
ξ,t would be higher than the ξ-expected

regret than πt:∑
µ∈M

ξ(µ)Regt(µ, π
TR
ξ,t , s0, t) ≥ ξ(µ′)Regt(µ

′, πTR
ξ,m, s0, t) sum of non-negative elements

≥ ξ(µ′)(kt− n) by (9.9)

>
∑
µ∈M

ξ(µ)Regt(µ, πt, s0, t) by (9.8) for sufficiently large t.

But πTR
ξ,m maximizes ξ-expected reward

∑
µ∈M ξ(µ)G̃t(µ, π, s0) by definition, which

means that it minimizes ξ-expected regret. Thus, πTR
ξ,t must have sublinear regret.

9.4.3. Implications

Theorem 9.18 gives an abstract condition for which decoupled RL settings enable agents

to learn the true reward function in spite of sensory corruption. For the concrete models

it implies the following:

• RL. Due to the “self-observation” property of the RL observation graph Sobs
s′ =

{s′}, the conditions can only be satisfied when S = Ssafe or q = 0, i.e. when there

is no reward corruption at all.

• CIRL. The agent can only observe the supervisor action in the current state s, so

the agent essentially only gets reward information about states s′ reachable from

s in a small number of steps. Thus, the sets Sobs
s′ may be smaller than 2q in many

settings. While the situation is better than for RL, sensory corruption may still

mislead CIRL agents (see Example 9.20 below).

• LVFS. Stories may be available from a large number of states, and can describe

any state. Thus, the sets Sobs
s′ are realistically large, so the |Sobs

s′ | > 2q condition

can be satisfied for all s′.

• SSRL. The supervisor’s evaluation of any state s′ may be available from safe states

where the agent is back in the lab. Thus, the Sobs
s′
⋂
Ssafe 6= ∅ condition can be

satisfied for all s′.
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9. An MDP Perspective on Reward Corruption

Thus, we find that RL and CIRL are unlikely to offer complete solutions to the sen-

sory corruption problem, but that both LVFS and SSRL do under reasonably realistic

assumptions.

Agents drawing from multiple sources of evidence are likely to be the safest, as they

will most easily satisfy the conditions of Theorems 9.18 and 9.19. For example, humans

simultaneously learn their values from pleasure/pain stimuli (RL), watching other people

act (CIRL), listening to stories (LVFS), as well as (parental) evaluation of different

scenarios (SSRL). Combining sources of evidence may also go some way toward managing

reward corruption beyond sensory corruption. For the showering robot of Example 9.2,

decoupled RL allows the robot to infer the reward of the showering state when in other

states. For example, the robot can ask a human in the kitchen about the true reward of

showering (SSRL), or infer it from human actions in different states (CIRL).

CIRL sensory corruption. Whether CIRL agents are vulnerable to reward corruption

has generated some discussion among AI safety researchers (based on informal discussion

at conferences). Some argue that CIRL agents are not vulnerable, as they only use the

sensory data as evidence about a true signal, and have no interest in corrupting the

evidence. Others argue that CIRL agents only observe a function of the reward function

(the optimal policy or action), and are therefore equally susceptible to reward corruption

as RL agents.

Theorem 9.18 sheds some light on this issue, as it provides sufficient conditions for

when the corrupt reward problem can be avoided. The following example illustrates a

situation where CIRL does not satisfy the conditions, and where a CIRL agent therefore

suffers significant regret due to reward corruption.

Example 9.20 (CIRL sensory corruption). Formally in CIRL, an agent and a human

both make actions in an MDP, with state transitions depending on the joint agent-human

action (a, aH). Both the human and the agent are trying to optimize a reward function

Ṙ, but the agent first needs to infer Ṙ from the human’s actions. In each transition

the agent observes the human action. Analogously to how the reward may be corrupt

for RL agents, we assume that CIRL agents may systematically misperceive the human

action in certain states. Let âH be the observed human action, which may differ from

the true human action ȧH .

In this example, there are two states s1 and s2. In each state, the agent can choose

between the actions a1, a2, and w, and the human can choose between the actions aH1
and aH2 . The agent action ai leads to state si with certainty, i = 1, 2, regardless of the

human’s action. Only if the agent chooses w does the human action matter. Generally,
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s1 s2

1− p (w, aH1 )
p

0.5− p
(w, aH2 )

0.5 + p

(a2, ·)
(a1, ·)
(w, ·) (a2, ·)

(a1, ·)

Figure 9.6.: Example of a CRMDP where CIRL fails to learn the right thing because of
sensory corruption.

aH1 is more likely to lead to s1 than aH2 . The exact transition probabilities are determined

by the unknown parameter p as displayed in Figure 9.6.

Hypo-

thesis
p

Best

state

s2

corrupt

H1 0.5 s1 Yes

H2 0 s2 No

The agent’s two hypotheses for p, the true reward/preferred state, and the corruptness

of state s2 are summarized in the above table. In hypothesis H1, the human prefers s1,

but can only reach s1 from s2 with 50% reliability. In hypothesis H2, the human prefers

s2, but can only remain in s2 with 50% probability. After taking action w in s2, the

agent always observes the human taking action âH2 . In H1, this is explained by s2 being

corrupt, and the true human action being aH1 . In H2, this is explained by the human

preferring s2. The hypotheses H1 and H2 are empirically indistinguishable, as they both

predict that the transition s1 → s2 will occur with 50% probability after the observed

human action âH2 in s2.

Assuming that the agent considers non-corruption to be likelier than corruption, the

best inference the agent can make is that the human prefers s2 to s1 (i.e. H2). The

optimal policy for the agent is then to always choose a2 to stay in s2, which means the

agent suffers maximum regret. ♦

Example 9.20 provides an example where a CIRL agent “incorrectly” prefers a state

due to sensory corruption. The sensory corruption is analogous to reward corruption in

RL, in the sense that it leads the agent to the wrong conclusion about the true reward

in the state. Thus, highly intelligent CIRL agents may be prone to wireheading, as they

may find (corrupt) states s where all evidence in s points to s having very high reward.7

7The construction required in Example 9.20 to create a “wireheading state” s2 for CIRL agents is
substantially more involved than for RL agents, so they may be less vulnerable to reward corruption
than RL agents.
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Figure 9.7.: Illustration of quantilization. By randomly picking a state with reward
above some threshold δ, adversarially placed corrupt states are likely to be
avoided.

In light of Theorem 9.18, it is not surprising that the CIRL agent in Example 9.20 fails

to avoid the corrupt reward problem. Since the human is unable to affect the transition

probability from s1 to s2, no evidence about the relative reward between s1 and s2

is available from the non-corrupt state s1. Only observations from the corrupt state s2

provide information about the reward. The observation graph for Example 9.20 therefore

looks like
s1 s2 , with no information being provided from s1.

9.5. Quantilization: Randomness Increases Robustness

Not all contexts allow the agent to get sufficiently rich data to overcome the reward

corruption problem via Theorems 9.18 and 9.19. It is often much easier to construct RL

agents than it is to construct CIRL agents, which in turn may often be more feasible

than designing LVFS or SSRL agents. Is there anything we can do to increase robustness

without providing the agent additional sources of data?

Going back to the true reward agents of Section 9.3, the problem was that they got

stuck on a particular value r̃∗ of the observed reward. If unlucky, r̃∗ was available

in a corrupt state, in which case the true reward agent may get no true reward. In

other words, there were adversarial inputs where the true reward agent πTR
ξ,m performed

poorly. A common way to protect against adversarial inputs is to use a randomized

algorithm. Applied to RL and CRMDPs, this idea leads to quantilizing agents (Taylor,

2016). Rather than choosing the state with the highest observed reward, these agents

instead randomly choose a state from a top quantile of high-reward states.

9.5.1. Simple Case

To keep the idea simple, a quantilization agent is first defined for the simple case where

the agent can stay in any state of its choosing (Assumption 9.13.ii). Theorem 9.22
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establishes a simple regret bound for this setting. A more general quantilization agent

is developed in Section 9.5.2.

Definition 9.21 (Quantilizing Agent). For δ < 1, the δ-quantilizing agent πδ random

walks until all states have been visited at least once. Then it selects a state s̃ uniformly

at random from Sδ = {s : R̃(s) ≥ δ}, the top quantile of high observed reward states.

Then πδ goes to s̃ (by random walking or otherwise) and stays there.

For example, a quantilizing robot in Example 9.2 would first try to find many ways in

which it could get high observed reward, and then randomly pick one of them. If there

are many more high reward states than corrupt states (e.g. the shower is the only place

with inflated rewards), then this will yield a reasonable amount of true reward with high

probability.

Theorem 9.22 (Quantilization). In any CRMDP satisfying Assumption 9.11.ii and As-

sumption 9.13, the δ-quantilizing agent πδ with δ = 1 −
√
q/|S| suffers time-averaged

regret at most

lim
t→∞

1

t
Reg(M, πδ, s0, t) ≤ 1−

(
1−

√
q/|S|

)2
. (9.10)

Proof. By Assumption 9.13.i, πδ eventually visits all states when random walking. By

Assumption 9.13.ii, it can stay in any given state s.

The observed reward R̃(s) in any state s ∈ Sδ is at least δ. By Assumption 9.11.ii,

at most q of these states are corrupt; in the worst case, their true reward is 0 and

the other |Sδ| − q states (if any) have true reward δ. Thus, with probability at least

(|Sδ| − q)/|Sδ| = 1 − q/|Sδ|, the δ-quantilizing agent obtains true reward at least δ at

each time step, which gives

lim
t→∞

1

t
Reg(M, πδ, s0, t) ≤ 1− δ(1− q/|Sδ|). (9.11)

(If q ≥ |Sδ|, the bound (9.11) is vacuous.)

Under Assumption 9.13.iii, for any δ ∈ [0, 1], |Sδ| ≥ (1− δ)|S|. Substituting this into

(9.11) gives:

lim
t→∞

1

t
Reg(M, πδ, s0, t) ≤ 1− δ

(
1− q

(1− δ)|S|

)
. (9.12)

Equation (9.12) is optimized by δ = 1−
√
q/|S|, which gives the stated regret bound.

The time-averaged regret gets close to zero when the fraction of corrupt states q/|S|
is small. For example, if at most 0.1% of the states are corrupt, then the time-averaged

regret will be at most 1− (1−
√

0.001)2 ≈ 0.06. Compared to the πRL
ξ,m and πTR

ξ,m agents
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that had regret close to 1 under the same conditions (Theorem 9.15), this is a significant

improvement.

If rewards are stochastic, then the quantilizing agent may be modified to revisit all

states many times, until a confidence interval of length 2ε and confidence 1 − ε can be

established for the expected reward in each state. Letting πδt be the quantilizing agent

with ε = 1/t gives the same regret bound (9.10) with πδ substituted for πδt .

Interpretation. It may seem odd that randomization improves worst-case regret. In-

deed, if the corrupt states were chosen randomly by the environment, then randomization

would achieve nothing. To illustrate how randomness can increase robustness, we make

an analogy to Quicksort, which has average time complexity O(n log n), but worst-case

complexity O(n2). When inputs are guaranteed to be random, Quicksort is a simple and

fast sorting algorithm. However, in many situations, it is not safe to assume that inputs

are random. Therefore, a variation of Quicksort that randomizes the input before it sorts

them is often more robust. Similarly, in the examples mentioned in the introduction, the

corrupt states precisely coincide with the states the agent prefers; such situations would

be highly unlikely if the corrupt states were randomly distributed. Li (1992) develops

an interesting formalization of this idea.

Another way to justify quantilization is by Goodhart’s law, which states that most

measures of success cease to be good measures when used as targets. Applied to rewards,

the law would state that cumulative reward is only a good measure of success when the

agent is not trying to optimize reward. While a literal interpretation of this would defeat

the whole purpose of RL, a softer interpretation is also possible, allowing reward to be a

good measure of success as long as the agent does not try to optimize reward too hard.

Quantilization may be viewed as a way to build agents that are more conservative in

their optimization efforts (Taylor, 2016).

Alternative randomization. Not all randomness is created equal. For example, the

simple randomized soft-max and ε-greedy policies do not offer regret bounds on par with

πδ, as shown by the following example. This motivates the more careful randomization

procedure used by the quantilizing agents.

Example 9.23 (Soft-max and ε-greedy). Consider the following simple CRMDP with

n > 2 actions a1, . . . , an:

s1 s2

r̃ = ṙ = 1− ε

ṙ = 0

r̃ = 1

a2, . . . , ana1

a2, . . . , an

a1
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State s1 is non-corrupt with R̃(s1) = Ṙ(s1) = 1− ε for small ε > 0, while s2 is corrupt

with R̃(s2) = 1 and Ṙ(s2) = 0. The Soft-max and ε-greedy policies will assign higher

value to actions a2, . . . , an than to a1. For large n, there are many ways of getting to s2,

so a random action leads to s2 with high probability. Thus, soft-max and ε-greedy will

spend the vast majority of the time in s2, regardless of randomization rate and discount

parameters. This gives a regret close to 1 − ε, compared to an informed policy always

going to s1. Meanwhile, a δ-quantilizing agent with δ ≤ 1/2 will go to s1 and s2 with

equal probability, which gives a more modest regret of (1− ε)/2. ♦

9.5.2. General Quantilization Agent

This section generalizes the quantilizing agent to RL problems not satisfying Assump-

tion 9.13. This generalization is important, because it is usually not possible to remain

in one state and get high reward. The most naive generalization would be to sample

between high reward policies, instead of sampling from high reward states. However,

this will typically not provide good guarantees. To see why, consider a situation where

there is a single high reward corrupt state s, and there are many ways to reach and leave

s. Then a wide range of different policies all get high reward from s. Meanwhile, all

policies getting reward from other states may receive relatively little reward. In this sit-

uation, sampling from the most high reward policies is not going to increase robustness,

since the sampling will just be between different ways of getting reward from the same

corrupt state s.

For this reason, we must ensure that different “sampleable” policies get reward from

different states. As a first step, we make a couple of definitions to say which states

provide reward to which policies. The concepts of Definition 9.25 are illustrated in

Figure 9.8.

Definition 9.24 (Unichain CRMDP (Puterman, 1994, p. 348)). A CRMDP µ is

unichain if any stationary policy π : S → ∆A induces a stationary distribution dπ on S
that is independent of the initial state s0.

Definition 9.25 (Value support). In a unichain CRMDP, let the asymptotic value

contribution of s to π be vcπ(s) = dπ(s)R̃(s). We say that a set Sδi is δ-value supporting

a policy πi if

∀s ∈ Sδi : vcπi(s) ≥ δ/|Sδi |.

We are now ready to define a general δ-Quantilizing agent. The definition is for

theoretical purposes only. It is unsuitable for practical implementation both because of
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s1

s2

s3

s4

r̃ = 0

r̃ = 1

r̃ = 0

r̃ = 1

Sδi

Figure 9.8.: Illustration of r̃-contribution and value support. Assume the policy πi
randomly traverses a loop s1, s2, s3, s4 indefinitely, with dπi(sj) = 1/4 for
j = 1, . . . , 4. The r̃-contribution vcπi is 0 in s1 and s3, and vcπi is 1/4·1 = 1/4
in s2 and s4. The set Sδi = {s2, s4} is a δ-value supporting πi for δ = 1/2,
since vcπi(s2) = vcπi(s4) ≥ (1/2)/2 = 1/4.

the extreme data and memory requirements of Step 1, and because of the computational

complexity of Step 2. Finding a practical approximation is left for future research.

Definition 9.26 (General δ-Quantilizing Agent). In a unichain CRMDP, the generalized

δ-quantilizing agent πδ performs the following steps. The input is a CRMDP µ and a

parameter δ ∈ [0, 1].

1. Estimate the value of all stationary policies, including their value support.

2. Choose a collection of disjoint sets Sδi , each δ-value supporting a stationary policy

πi. If multiple choices are possible, choose one maximizing the cardinality of the

union Sδ =
⋃
i Sδi . If no such collection exists, return: “Failed because δ too high”.

3. Randomly sample a state s from Sδ =
⋃
i Sδi .

4. Follow the policy πi associated with the set Sδi containing s.

The general quantilizing agent of Definition 9.26 is a generalization of the simple

quantilizing agent of Definition 9.21. In the special case where Assumption 9.13 holds,

the general agent reduces to the simpler one by using singleton sets Sδi = {si} for high

reward states si, and by letting πi be the policy that always stays in si. In situations

where it is not possible to keep receiving high reward by remaining in one state, the

generalized Definition 9.26 allows policies to solicit rewards from a range of states. The

intuitive reason for choosing the policy πi with probability proportional to the value

support in Steps 3–4 is that policies with larger value support are better at avoiding

corrupt states. For example, a policy only visiting one state may have been unlucky and
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picked a corrupt state. In contrast, a policy obtaining reward from many states must be

“very unlucky” if all the reward states it visits are corrupt.

Theorem 9.27 (General quantilization agent regret bound). In any unichain CRMDP

µ, a general δ-quantilizing agent πδ suffers time-averaged regret at most

lim
t→∞

1

t
Reg(M, πδ, s0, t) ≤ 1− δ(1− q/|Sδ|) (9.13)

provided a non-empty collection {Sδi } of δ-value supporting sets exists.

Proof. We will use the notation from Definition 9.26.

Step 1 is well-defined since the CRMDP is unichain, which means that for all stationary

policies π the stationary distribution dπ and the value support vcπ are well-defined and

may be estimated simply by following the policy π. There is a (large) finite number of

stationary policies, so in principle their stationary distributions and value support can

be estimated.

To bound the regret, consider first the average reward of a policy πi with value support

Sδi . The policy πi must obtain asymptotic average observed reward at least:

lim
t→∞

1

t
G̃t(µ, πi, s0) =

∑
s∈S

dπ(s)R̃(s) by definition of dπ and G̃t

≥
∑
s∈Sδi

dπ(s)R̃(s) sum of positive terms

≥
∑
s∈Sδi

δ/|Sδi | Sδi is δ-value support for πi

= |Sδi | · δ/|Sδi | = δ

If there are qi corrupt states in Sδi with true reward 0, then the average true reward

must be

lim
t→∞

1

t
Ġt(µ, πi, s0) ≥ (|Sδi | − qi) · δ/|Sδi | = (1− qi/|Sδi |) · δ (9.14)

since the true reward must correspond to the observed reward in all the (|Sδi | − qi)

non-corrupt states.

For any distribution of corrupt states, the quantilizing agent that selects πi with

probability P (πi) = |Sδi |/|Sδ| will obtain

lim
t→∞

1

t
Gt(µ, π

δ, s0) = lim
t→∞

1

t

∑
i

P (πi)Gt(µ, πi, s0)

≥
∑
i

P (πi)(1− qi/|Sδi |) · δ by equation (9.14)
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= δ
∑
i

|Sδi |
|Sδ|

(1− qi/|Sδi |) by construction of P (πi)

=
δ

|Sδ|
∑
i

(|Sδi | − qi) elementary algebra

=
δ

|Sδ|
(|Sδ| − q) = δ(1− q/|Sδ|) by summing |Sδi | and qi

The informed policy gets true reward at most 1 at each time step, which gives the

claimed bound (9.13).

When Assumption 9.13 is satisfied, the bound is the same as for the simple quantilizing

agent in Section 9.5.1 for δ = 1−
√
q/|S|. In other cases, the bound may be much weaker.

For example, in many environments it is not possible to obtain reward by remaining in

one state. The agent may have to spend significant time “traveling” between high reward

states. So typically only a small fraction of the time will be spent in high reward states,

which in turn makes the stationary distribution dπ small. This puts a strong upper

bound on the value contribution vcπ, which means that the value supporting sets Sδi
will be empty unless δ is close to 0. While this makes the bound of Theorem 9.27 weak,

it nonetheless bounds the regret away from 1 even under weak assumptions, which is a

significant improvement on the RL and true reward agents in Theorem 9.15.

Examples. To make the discussion a bit more concrete, let us also speculate about the

performance of a quantilizing agent in some of the examples in the introduction:

• In the boat racing example (Example 9.1), the circling strategy only got about

20% higher score than a winning strategy (Clark and Amodei, 2016). Therefore, a

quantilizing agent would likely only need to sacrifice about 20% observed reward

in order to be able to randomly select from a large range of winning policies.

• In the wireheading example (Example 9.3), it is plausible that the agent gets sig-

nificantly more reward in wireheaded states compared to “normal” states. Wire-

heading policies may also be comparatively rare, as wireheading may require very

deliberate sequences of actions to override sensors. Under this assumption, a quan-

tilizing agent may be less likely to wirehead. While it may need to sacrifice a large

amount of observed reward compared to an RL agent, its true reward may often

be greater.

Summary. In summary, quantilization offers a way to increase robustness via random-

ization, using only reward feedback. Unsurprisingly, the strength of the regret bounds
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(a) 1 goal tile (b) 2 goal tiles (c) 4 goal tiles

Figure 9.9.: Starting positions: the blue square indicates corrupt reward, and the yellow
circles indicate true rewards.

heavily depends on the assumptions we are willing to make, such as the prevalence

of high reward states. Further research may investigate efficient approximations and

empirical performance of quantilizing agents, as well as dynamic adjustments of the

threshold δ. Combinations with imperfect decoupled RL solutions (such as CIRL), as

well as extensions to infinite state spaces could also offer fruitful directions for further

theoretical investigation. Taylor (2016) discusses some general open problems related to

quantilization.

9.6. Experimental Results

In this section the theoretical results are illustrated with some simple experiments. The

setup is a gridworld containing some true reward tiles (indicated by yellow circles) and

some corrupt reward tiles (indicated by blue squares). We use a setup with 1, 2 or 4 goal

tiles with true reward 0.9 each, and one corrupt reward tile with observed reward 1 and

true reward 0 (Figure 9.9 shows the starting positions). Empty tiles have reward 0.1,

and walking into a wall gives reward 0. The state is represented by the (x, y) coordinates

of the agent. The agent can move up, down, left, right, or stay put. The discounting

factor is γ = 0.9. This is a continuing task, so the environment does not reset when

the agent visits the corrupt or goal tiles. The experiments were implemented in the

AIXIjs framework for reinforcement learning (Aslanides et al., 2017) and the code is

available online in the AIXIjs repository (http://aslanides.io/aixijs/demo.html?

reward_corruption).

We demonstrate that RL agents like Q-learning and softmax Q-learning cannot over-

come corrupt reward (as discussed in Section 9.3), while quantilization helps overcome

corrupt reward (as discussed in Section 9.5). We run Q-learning with ε-greedy (ε = 0.1),
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(a) Observed rewards for 1 goal tile
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(b) True rewards for 1 goal tile
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(c) Observed rewards for 2 goal tiles
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(d) True rewards for 2 goal tiles

100 101 102 103 104 105 106

Cycles

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 O

b
se

rv
e
d
 R

e
w

a
rd

Q-learning

Softmax

Quantilising (.2)

Quantilising (.5)

Quantilising (.8)

(e) Observed rewards for 4 goal tiles
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(f) True rewards for 4 goal tiles

Figure 9.10.: Trajectories of average observed and true rewards for Q-learning, softmax
and quantilizing agents, showing mean ± standard deviation over 100 runs.
Q-learning and quantilizing agents converge to a similar observed reward,
but very different true rewards (much higher for the quantilizer with high
variance). The value of δ that gives the highest true reward varies for
different numbers of goal tiles.
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goal tiles agent observed reward true reward

1

Q-learning 0.923± 0.0003 0.00852± 0.00004
Softmax Q-learning 0.671± 0.0005 0.0347± 0.00006

Quantilizing (δ = 0.2) 0.838± 0.15 0.378± 0.35
Quantilizing (δ = 0.5) 0.943± 0.12 0.133± 0.27
Quantilizing (δ = 0.8) 0.979± 0.076 0.049± 0.18

2

Q-learning 0.921± 0.00062 0.0309± 0.0051
Softmax Q-learning 0.671± 0.0004 0.0738± 0.0005

Quantilizing (δ = 0.2) 0.934± 0.047 0.594± 0.43
Quantilizing (δ = 0.5) 0.931± 0.046 0.621± 0.42
Quantilizing (δ = 0.8) 0.944± 0.05 0.504± 0.45

4

Q-learning 0.924± 0.0002 0.00919± 0.00014
Softmax Q-learning 0.657± 0.0004 0.111± 0.0006

Quantilizing (δ = 0.2) 0.918± 0.038 0.738± 0.35
Quantilizing (δ = 0.5) 0.926± 0.044 0.666± 0.39
Quantilizing (δ = 0.8) 0.915± 0.036 0.765± 0.32

Table 9.1.: Average true and observed rewards after 1 million cycles, showing mean ±
standard deviation over 100 runs. Q-learning achieves high observed reward
but low true reward, and softmax achieves medium observed reward and a
slightly higher true reward than Q-learning. The quantilizing agent achieves
similar observed reward to Q-learning, but much higher true reward (with
much more variance). Having more than 1 goal tile leads to a large improve-
ment in true reward for the quantilizer, a small improvement for softmax,
and no improvement for Q-learning.
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softmax with temperature β = 2, and the quantilizing agent with δ = 0.2, 0.5, 0.8 (where

0.8 = 1 −
√
q/|S| = 1 −

√
1/25) for 100 runs with 1 million cycles. Average observed

and true rewards after 1 million cycles are shown in Table 9.1, and reward trajectories

are shown in Figure 9.10. Q-learning gets stuck on the corrupt tile and spend almost all

the time there (getting observed reward around 1 · (1− ε) = 0.9), softmax spends most

of its time on the corrupt tile, while the quantilizing agent often stays on one of the goal

tiles.

9.7. Conclusions

This chapter has studied reward corruption in MDP extensions called CRMDPs. Reward

functions may be corrupt due to bugs or misspecifications, sensory errors, or because

the agent finds a way to inappropriately modify the reward mechanism. Some examples

were given in Section 9.1 (Examples 9.1 to 9.3). As agents become more competent

at optimizing their reward functions, they will likely also become more competent at

(ab)using reward corruption to gain higher reward. Reward corruption may impede the

performance of a wide range of agents, and may have disastrous consequences for highly

intelligent agents (Bostrom, 2014).

To formalize the corrupt reward problem, we extended MPDs with a possibly corrupt

reward function, and defined a formal performance measure (regret). This enabled the

derivation of a number of formally precise results for how seriously different agents were

affected by reward corruption in different setups (Table 9.2). The results corroborate

the informal arguments we made about decoupled reward data in Section 8.4.

Assumption No assumptions
Assumption 9.11 or 9.11′, and . . .

no other assumptions Assumption 9.13 CIRL SSRL/LVFS

Result all agents fail πδ weak bound
πRL
ξ,m, πTR

ξ,m fail

πδ succeeds
πTR
ξ,m fails πTR

ξ,m succeeds

Table 9.2.: Main takeaways. Without additional assumptions, all agents fail (i.e., suffer
high regret). Restricting the reward corruption with Assumption 9.11 gives
a weak bound for the quantilizing agent. The πRL

ξ,m and πTR
ξ,m agents still fail

even if we additionally assume many high reward states and agent control
(Assumption 9.13), but the quantilizing agent πδ does well. In most realistic
contexts, the true reward is learnable in spite of sensory corruption in SSRL
and LVFS, but not in CIRL.

The main takeaways from the results are:

• Without simplifying assumptions, no agent can avoid the corrupt reward problem
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(Theorem 9.10). This is effectively a No Free Lunch result, showing that unless

some assumption is made about the reward corruption, no agent can outperform a

random agent. Some natural simplifying assumptions to avoid the No Free Lunch

result were suggested in Section 9.2.

• Using the reward signal as evidence rather than optimization target is no magic

bullet, even under strong simplifying assumptions (Theorem 9.15). Essentially,

this is because the agent does not know the exact relation between the observed

reward (the “evidence”) and the true reward.8 However, when the data enables

sufficient crosschecking of rewards, agents can avoid the corrupt reward problem

(Theorems 9.18 and 9.19). For example, in SSRL and LVFS this type of cross-

checking is possible under natural assumptions. In RL, no crosschecking is possible,

while CIRL is a borderline case. Combining frameworks and providing the agent

with different sources of data may often be the safest option.

• In cases where sufficient crosschecking of rewards is not possible, quantilization

may improve robustness (Theorems 9.22 and 9.27). Essentially, quantilization

prevents agents from overoptimizing their objectives. Interestingly, quantiliza-

tion thereby offers a way to partially sidestep misalignment problems, permitting

agents to be useful in spite of somewhat misaligned utility functions. How well

quantilization works depends on how the number of corrupt solutions compares to

the number of good solutions.

The results indicate that while reward corruption constitutes a major problem for

traditional RL algorithms, there are promising ways around it, both within the RL

framework, and in alternative frameworks such as CIRL, SSRL and LVFS.

Future work. Finally, some interesting open questions are listed below:

• (Non-stationary corruption function) In this work, we tacitly assumed that both

the reward and the corruption functions are stationary, and are always the same in

the same state. What if the corruption function is non-stationary, and influenceable

by the agent’s actions, such as if the agent builds a delusion box around itself?

(Example 6.2.3.b; Ring and Orseau, 2011).

• (Infinite state space) Many of the results and arguments relied on there being a

finite number of states. This makes learning easy, as the agent can visit every

8In situations where the exact relation is known, then a non-corrupt reward function can be defined.
Our results are not relevant for this case.
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state. It also makes quantilization easy, as there is a finite set of states/strategies

to randomly sample from. What if there is an infinite number of states, and the

agent has to generalize insights between states? What are the conditions on the

observation graph for Theorems 9.18 and 9.19? What is a good generalization of

the quantilizing agent?

• (Concrete CIRL condition) In Example 9.20, we only heuristically inferred the

observation graph from the CIRL problem description. Is there a general way

of doing this? Or is there a direct formulation of the no-corruption condition in

CIRL, analogous to Theorems 9.18 and 9.19?

• (Practical quantilizing agent) As formulated in Definition 9.21, the quantilizing

agent πδ is extremely inefficient with respect to data, memory, and computation.

Meanwhile, many practical RL algorithms use randomness in various ways (e.g. ε-

greedy; Sutton and Barto, 1998). Is there a way to make an efficient quantilization

agent that retains the robustness guarantees?

• (Dynamically adapting quantilizing agent) In Definition 9.26, the threshold δ is

given as a parameter. Under what circumstances can we define a “parameter free”

quantilizing agent that adapts δ as it interacts with the environment?

• (Decoupled RL quantilization result) What if quantilization is combined with de-

coupled RL? Will this enable a stronger result than Theorems 9.18 and 9.19?
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“Whatever evidence an act might provide

On what could have caused the act

Should never be used to help on decide

On whether to choose that same act”

Judea Pearl (2009)

10. Sequential Decision Theory1

In this chapter we will compare decision theories for agents that are part of the envi-

ronment they interact with, sometimes called the physicalistic setting. The two main

contenders for this setting are causal decision theory (CDT) and evidential decision the-

ory (EDT). Understanding the implications of different decision theories may contribute

to more informed choices of algorithms. A close understanding of decision theory may

therefore turn out to be important for designing a safe AGI.

Following some background in Section 10.1, the standard definitions of CDT and EDT

for one-shot settings are given in Section 10.2. We then define a model for sequential

physicalistic decision problems where the agent alternates between taking actions and

observing their consequences (Section 10.3), and consider sequential extensions of CDT

and EDT (Section 10.4). One of our main findings is that evidential decision theory

has two natural extensions while causal decision theory only has one. Implications of

our results are discussed in Section 10.5. An appendix contains many examples that

illustrate differences between the decision theories (Appendix 10.A).

10.1. Physicalistic Decision Making

A common assumption in artificial intelligence is that an agent interacts sequentially

with an environment by taking actions and receiving percepts (Russell and Norvig,

2010). This model is dualistic: the agent is distinct from the environment. It influences

the environment only through its actions, and the environment has no other information

about the agent. The dualism assumption is accurate for an algorithm that is playing

chess, Go, or other (video) games, which explains why it is ubiquitous in AI research.

But often it is not true: real-world agents such as robots are embedded in (and computed

by) the environment (Orseau and Ring, 2012), and then a physicalistic model2 is more

appropriate.

1This chapter is based on Tom Everitt, Jan Leike, and Marcus Hutter (2015). “Sequential Extensions
of Causal and Evidential Decision Theory”. In: Algorithmic Decision Theory. Ed. by Toby Walsh.
Springer, pp. 205–221. arXiv: 1506.07359.

2Some authors also call this type of model materialistic or naturalistic.
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environment

hidden state s

at

et

agent π

environment model ξ

self-model

Figure 10.1.: The physicalistic model. The hidden state s contains information about the
agent that is unknown to it. The distribution ξ is the agent’s (subjective)
environment model, and π its (deterministic) policy. The agent models
itself through the beliefs about (future) actions given by its environment
model ξ. Interaction with the environment at time step t occurs through an
action at chosen by the agent and a percept et returned by the environment.

This distinction becomes relevant in multi-agent settings with similar agents, where

each agent encounters ‘echoes’ of its own decision making. If the other agents are running

the same source code, then the agents’ decisions are logically connected. This link can be

used for uncoordinated cooperation (Lavictoire et al., 2014). Moreover, a physicalistic

model is indispensable for self-reflection. If the agent is required to autonomously verify

its integrity, and perform maintenance, repair, or upgrades, then the agent needs to be

aware of its own functioning. For this, a reliable and accurate self-modeling is essential.

Today, applications of this level of autonomy are mostly restricted to space probes distant

from earth or robots navigating lethal situations, but in the future this might also become

crucial for sustained self-improvement in generally intelligent agents (Bostrom, 2014;

Russell, Dewey, et al., 2016; Soares and Fallenstein, 2017; Yudkowsky, 2008a). Indeed,

in Section 5.3 we modeled the agent as part of the environment in order to study the

possibility of self-corruption. In Chapters 5 to 8 we temporarily evaded decision theoretic

issues by using CDT without further consideration.

An agent with a physicalistic model of the environment models itself as part of the

environment. This is schematically depicted in Figure 10.1. The agent may not know

everything about itself initially, but its model may improve over time. This can be

modeled through a hidden state of the environment that contains information about the

agent that is inaccessible to the agent itself, as well as other unknown aspects of the

environment.3 The agent has a belief ξ that describes the behavior of the environment

given the hidden state, including beliefs about the agent’s own future actions.

Physicalistic agents may view their actions in two ways: as their selected output, and

as information about what type of agent they are and about the hidden state. This

3See Hibbard (2014a,b, 2015) for another approach to this problem.
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leads to significantly more complex problems of inference and decision making, with

actions simultaneously being both means to influence the environment and evidence

about it. For example, looking at cat pictures online may simultaneously be a means of

procrastination, and evidence of bad air quality in the room.

10.2. One-Shot Decision Making

This section reviews work on physicalistic decision theory for one-shot problems. First,

dualistic decision making in a known environment is straightforward calculation of ex-

pected utilities. This is known as Savage decision theory (Savage, 1954). For non-

dualistic decision making two main approaches are offered by the decision theory lit-

erature: causal decision theory (CDT) (Gibbard and Harper, 1978; Joyce, 1999; Lewis

and Papadimitriou, 1981; Skyrms, 1982; Weirich, 2016) and evidential decision the-

ory (EDT) (Ahmed, 2014; Briggs, 2014; Jeffrey, 1990). EDT and CDT both take actions

that maximize expected utility, but differ in the way this expectation is computed: EDT

uses the action under consideration as evidence about the environment while CDT does

not.

In a one-shot decision problem, we take one action a ∈ A, receive a percept e ∈ E
(typically called outcome in the decision theory literature) and get a payoff u(e) according

to the utility function u : E → [0, 1]. We assume that the set of actions A and the set

of percepts E are finite. Additionally, the environment contains a hidden state s ∈ S.

The hidden state holds information that is inaccessible to the agent at the time of the

decision, but may influence the decision and the percept. Formally, the environment

is given by a causal graph µ over the hidden state, the action, and the percept. The

graph is shown in Figure 10.2. See Chapter 4 and Pearl (2009) for background on causal

graphs.

10.2.1. Savage Decision Theory

In the dualistic formulation of decision theory, we have a function ξ that takes an ac-

tion a and returns a probability distribution ξa over percepts. Savage decision the-

ory (SDT) (Briggs, 2014; Savage, 1954) takes actions according to

arg max
a∈A

∑
e∈E

ξa(e)u(e). (SDT)

In the dualistic model it is usually conceptually clear what ξa should be. In the

physicalistic model the hidden state is not independent of the decision maker’s action and
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a e

s

Figure 10.2.: The causal graph ξ(s, a, e) = ξ(s)ξ(a | s)ξ(e | s, a) for one-step decision
making. The hidden state s influences both the decision maker’s action a
and the received percept e.

Savage’s model is not directly applicable since we do not have an obvious specification

of ξa. How should decisions be made in this context? The literature focuses on two

answers to this question: CDT and EDT.

10.2.2. Causal and Evidential Decision Theory

The literature on causal and evidential decision theory is vast, and we give only a very

superficial overview that is intended to bring the reader up to speed on the basics. See

Briggs (2014) and Weirich (2016) and references therein for more detailed introductions.

Evidential decision theory (Ahmed, 2014; Jeffrey, 1990), considers the probability of

the percept e conditional on taking the action a:

arg max
a∈A

∑
e∈E

ξ(e | a)u(e) with ξ(e | a) =
∑
s∈S

ξ(e | s, a)ξ(s | a) (EDT)

Causal decision theory has several formulations (Gibbard and Harper, 1978; Joyce,

1999; Lewis and Papadimitriou, 1981; Skyrms, 1982); we use the one given in (Skyrms,

1982), with Pearl’s calculus of causality (Pearl, 2009). According to CDT, the probability

of a percept e is given by the causal intervention of performing action a on the causal

graph from Figure 10.2:

arg max
a∈A

∑
e∈E

ξ(e | do(a))u(e) with ξ(e | do(a)) =
∑
s∈S

ξ(e | s, a)ξ(s) (CDT)

where ξ(e | do(a)) follows from definition of the do-operator (Section 4.1 on Page 46)

and marginalization of s.

The difference between CDT and EDT is how the action affects the belief about the

hidden state. EDT assigns credence ξ(s | a) to the hidden state s if action a is taken,

while CDT assigns credence ξ(s). A common argument for CDT is that an action under
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my direct control should not influence my belief about things that are not causally

affected by the action. Hence ξ(s) should be my belief in s, and not ξ(s | a). (By

assumption, the action does not causally affect the hidden state.) EDT might reply that

if action a does not have the same likelihood under all hidden states s, then action a

should indeed inform me about the hidden state, regardless of causal connection. The

following two classical examples from the decision theory literature describe situations

where CDT and EDT disagree. A formal definition of these examples can be found in

Appendix 10.A.

Example 10.1 (Newcomb’s Problem (Nozick, 1969)). In Newcomb’s Problem there are

two boxes: an opaque box that is either empty or contains one million dollars and a

transparent box that contains one thousand dollars. The agent can choose between

taking only the opaque box (‘one-boxing’) and taking both boxes (‘two-boxing’). The

content of the opaque box is determined by a prediction about the agent’s action by a

very reliable predictor: if the agent is predicted to one-box, the box contains the million,

and if the agent is predicted to two-box, the box is empty. In Newcomb’s problem EDT

prescribes one-boxing because one-boxing is evidence that the box contains a million

dollars. In contrast, CDT prescribes two-boxing because two-boxing dominates one-

boxing: in either case we are a thousand dollars richer, and our decision cannot causally

affect the prediction. Newcomb’s problem has been raised as a critique to CDT, but

many philosophers insist that two-boxing is in fact the rational choice,4 even if it means

you end up poor.

Note how the decision depends on whether the action influences the belief about the

hidden state (the contents of the opaque box) or not. ♦

Newcomb’s problem may appear as an unrealistic thought experiment. However, we

argue that problems with similar structure are fairly common. The main structural

requirement is that ξ(s | a) 6= ξ(s) for some state or event s that is not causally affected

by a. In Newcomb’s problem the predictor’s ability to guess the action induces an

‘information link’ between actions and hidden states. If the stakes are high enough,

the predictor does not have to be much better than random in order to generate a

Newcomblike decision problem. Consider for example spouses predicting the faithfulness

of their partners, employers predicting the trustworthiness of their employees, or parents

predicting their children’s intentions. For AIs, the potential for accurate predictions is

even greater, as the predictor may have access to the AI’s source code. Although rarely

perfect, all of these predictions are often substantially better than random.

4In a 2009 survey, 31.4% of philosophers favored two-boxing, and 21.3% favored one-boxing (931 re-
sponses); see http://philpapers.org/surveys/results.pl. Is that the reason there are so few
wealthy philosophers?
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To counteract the impression that EDT is generally superior to CDT, we also discuss

the toxoplasmosis problem.

Example 10.2 (Toxoplasmosis Problem5 (Altair, 2013)). This problem takes place in

a world in which there is a certain parasite that causes its hosts to be attracted to cats,

in addition to uncomfortable side effects. The agent is handed an adorable little kitten

and is faced with the decision of whether or not to pet it. Petting the kitten feels nice

and therefore yields more utility than not petting it. However, people suffering from

the parasite are more likely to pet the kitten. Petting the kitten is evidence of having

the parasite, so EDT recommends against it. CDT correctly observes that petting the

kitten does not cause the parasite, and is therefore in favor of petting. ♦

Newcomb’s problem (Example 10.1) and the toxoplasmosis problem (Example 10.2)

cannot be properly formalized in SDT, because SDT requires the percept-probabilities

ξa to be specified, but it is not clear what the right choice of ξa would be. However, both

CDT and EDT can be recast in the context of (SDT) by setting ξa to be ξ( · | do(a))

and ξ( · | a) respectively. Thus we could say that the formulation given by Savage needs

a specification of the environment that tells us whether to act evidentially, causally, or

otherwise.

10.3. The Sequential Physicalistic Model

In this section we formally specify the physicalistic model depicted in Figure 10.1, and

briefly discuss problems with time consistency. Returning to the sequential setup of

previous chapters, the agent will choose actions at ∈ A and receive a percepts et ∈ E for

multiple time steps. Rather than considering infinite interactions as in previous chapters,

we will restrict ourselves to finite interactions of m time steps. This is to avoid some

technicalities. After m time steps, the agent gets utility ũ(æ1:m) out of the interaction.

A history is an element of (A× E)∗. We use æ ∈ A× E to denote one interaction cycle,

and æ<t to denote a history of length t − 1. The percepts between time t and time m

are denoted et:m. A policy is a function that maps a history æ<t to the next action at.

For simplicity, we will restrict ourselves to deterministic policies in this chapter.

A causal graph of the agent’s model is given in Figure 10.3a. To make notation and

derivations simpler, we will aggregate the agent’s policy and the hidden state into one

5Historically, this problem has been known as the smoking lesion problem (Egan, 2007). We consider
the smoking lesion formulation confusing, because today it is universally known that smoking does
cause lung cancer.
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a1 e1 . . . am em

s′

π

(a) Explicit representation of the agent’s un-
certainty about itself.

a1 e1 . . . am em

s

(b) Aggregating all unobserved variables into
the hidden state s = (s′, π).

Figure 10.3.: Two representations of the causal graph for the agent’s model ξ of a se-
quential environment. Each action at and each percept et is represented by
a node in the causal graph. Actions and percepts affect all subsequent ac-
tions and percepts: causality follows time. The hidden state s is only ever
indirectly (partially) observed, and the agent only has partial knowledge
about its own configuration π.

node s, as shown in Figure 10.3b. The aggregated model ξ causally factorizes as:

ξ(s,æ<t) = ξ(s)

t−1∏
k=1

ξ(ak | s,æ<k)ξ(ek | s,æ<kak) (10.1)

for any 1 ≤ t ≤ m. The distribution ξ(at | s,æ<t) gives the likelihood of the agent’s own

actions provided a hidden state s ∈ S (for example, the prior probability of an infected

agent petting the kitten in the toxoplasmosis problem above). For technical reasons, this

distribution must always leave some uncertainty about the actions: if the environment

model assigned probability zero for an action a′, the agent could not deliberate taking

action a′ since a′ could not be conditioned on. Formally, we require ξ( · | s) to be

action-positive for all s ∈ S:

∀æ<tat ∈ (A× E)∗ ×A : ξ(æ<t | s) > 0 =⇒ ξ(at | s,æ<t) > 0. (10.2)

The distribution ξ is a model of the environment, a belief held by the agent, but not

the distribution from which the actual history is drawn. The actual history is distributed

according to the true environment distribution. Because the environment contains the

agent, the agent’s algorithm might get modified by it and the actions that the agent

actually ends up taking might not be the actions that were planned. In the end, model

and reality will disagree: for example, we simultaneously assume the agent’s policy π

to be deterministic and the environment model to be action positive. Nevertheless, we

assume the given environment model ξ is accurate in the sense that it faithfully represents
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the environment in the ways relevant to the agent. In other words, we are interested in

problems that arise during planning, not problems that arise due to poor modeling.

10.4. Sequential Decision Theory

In this section, we extend CDT and EDT to the sequential setting defined in Section 10.3.

Evidential extensions are discussed first (Section 10.4.1), thereafter causal extensions

(Section 10.4.2). In Section 10.4.3 we more closely analyze the differences. In Chapters 5

to 8 we always surrounded the agent’s policy with a do-operator, which means that the

distribution over the agent’s policies ξ(πt) was never utilized. This section will investigate

the consequences of letting the agent use its belief about its own policy to make inferences

about the environment.

10.4.1. Sequential Evidential Decision Theory

In one-shot settings, evidential decision theory assigns probability ξ(e | a) to action

a resulting in percept e (Section 10.2.2). There are two ways to generalize this to the

sequential setting, depending on whether we use only the next action or the whole future

policy as evidence for the next percept.

Definition 10.3 (Action-Evidential Decision Theory). The action-evidential value of a

policy π with lifetime m in environment ξ given history æ<tat is

V aev,π
ξ,m (æ<tat) :=

∑
et

ξ(et | æ<tat)
(
u(et) + V aev,π

ξ,m (æ<tatet)
)

(SAEDT)

and V aev,π
ξ,m (æ<tat) := 0 for t > m. Sequential Action-Evidential Decision Theory

(SAEDT) prescribes adopting an optimal and time consistent policy π for V aev
ξ,m .

It may be argued that SAEDT does not take all available (deliberative) information

into account. When considering the consequences of an action, future developments of

the environment-policy interactions could also be used as evidence. That is, we could

condition not only on the next action, but on the future policy as a whole (within the

lifetime). In order to define conditional probabilities with respect to (deterministic)

policies, we define the following events. For a given policy π, let Πt:m be the set of all

strings consistent with π between time step t and m:

Πt:m := {æ1:∞ | ∀t ≤ i ≤ m : π(æ<i) = ai}
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The likelihood of a next percept et provided a history æ<t and a (future) policy π

followed from time step t until lifetime m (denoted πt:m) is then defined as

ξ(et | æ<t, πt:m) := ξ(et | æ<t ∩Πt:m). (10.3)

The notation πt:m has a slightly different interpretation here than in Chapters 5 to 8.

In previous chapters, πt:m was a random variable due to the possibility of policy self-

corruption. Here instead the uncertainty comes from the agent not fully knowing its

own policy.

Equation (10.3) is an atemporal conditional because we are conditioning on future

actions up until the end of the agent’s lifetime. The conditional (10.3) is well-defined

because we only take the actions from time step t to m into account; conditioning on

policies with infinite lifetime leads to technical problems because such policies may have

ξ-measure zero.

We are now ready to define the policy-evidential extension of evidential decision theory.

Definition 10.4 (Policy-Evidential Decision Theory). The policy-evidential value of a

policy π with lifetime m in environment ξ given history æ<tat is

V pev,π
ξ,m (æ<tat) :=

∑
et

ξ(et | æ<tat, πt+1:m) ·
(
u(et) + V pev,π

ξ,m (æ<tatet)
)

(SPEDT)

and V pev,π
ξ,m (æ<t) := 0 for t > m. Sequential Policy-Evidential Decision Theory (SPEDT)

prescribes adopting an optimal and time consistent policy π for V pev
ξ,m .

For one-step decisions (m = t+ 1), SAEDT and SPEDT coincide.

Comparing action- and policy-evidential decision theory. To all our embedded agents,

past actions constitute evidence about the hidden state. For evidential agents, this

principle is extended to future actions. SAEDT and SPEDT differ in how far they extend

it. The action-evidential agent only updates its belief on the action about to take place.

In that sense, it only updates its belief about the next percept on events taking place

before this percept. The policy-evidential agent takes the principle much further, using

“thought-experiments” of what action it would take in hypothetical situations, most of

which will never be realized. This is illustrated in the next example.

Example 10.5 (Sequential Toxoplasmosis). In our sequential variation of the toxoplas-

mosis problem (Example 10.2) the agent has some probability of encountering a kitten.

Additionally, the agent has the option of seeing a doctor (for a fee) and getting tested

for the parasite, which can then be safely removed. In the very beginning, an SPEDT
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Healthy

No doc Kitten (0)

Not pet Healthy, not pet (0)

Pet Healthy, pet (1)

Doc Healthy (−4)

Toxo

No doc

Kitten (0)

Not pet Sick, not pet (−10)

Pet Sick, pet (−9)

Sick (−10)

Doc Cured (−4)

0.5

0.5

0.5

0.5

0.5

0.5

0.2

0.8

0.8

0.2

0.2

0.8

Figure 10.4.: One formalization of the sequential toxoplasmosis problem. Dashed lines
connect states indistinguishable to the agent. The numbers on the edges
indicate probabilities of the environment model ξ, and the numbers in
parenthesis indicate utilities of the associated percepts. In the first step,
the environment selects the hidden state that is unknown to the agent.
The agent then decides whether to go to the doctor. If he does not go, he
may encounter a kitten which he can choose to pet or not. SAEDT and
SPEDT will disagree whether going to the doctor is the best option in this
scenario. Appendix 10.A contains the full calculations.

agent updates his belief on the fact that if he encountered a kitten, he would not pet

it, which lowers the probability that he has the parasite and makes seeing the doctor

unattractive. An SAEDT agent only updates his belief about the parasite when he ac-

tually encounters a kitten, and thus prefers seeing the doctor. See Figure 10.4 for more

details and a graphical illustration. ♦

The observant reader may ask whether SPEDT could be enticed to make some percepts

unlikely by choosing improbable actions subsequent to them. For example, could an

SPEDT agent decide on a policy of selecting highly improbable actions in case it rained

to make histories with rain less likely? The answer is no, as most such policies would

not be time consistent. If it does rain, the highly improbable action would usually not

the best one, and so the policy would not be prescribed by Definition 10.4.

10.4.2. Sequential Causal Decision Theory

In sequential causal decision theory we ask what would happen if we causally intervened

on the node at of the next action and fix it to π(æ<t) according to the policy π. This is

expressed by the notation do(at := π(æ<t)), or do(π(æ<t)) for short.
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Definition 10.6 (Sequential Causal Decision Theory). The causal value of a policy π

with lifetime m in environment ξ given history æ<tat is

V cau,π
ξ,m (æ<tat) :=

∑
et∈E

ξ(et | æ<t, do(at))
(
u(et) + V cau,π

ξ,m (æ<tatet)
)

(SCDT)

and V cau,π
ξ,m (æ<tat) := 0 for t > m. Sequential Causal Decision Theory (SCDT) prescribes

adopting an optimal and time consistent policy π for V cau
ξ,m .

For sequential evidential decision theory we discussed two versions (SAEDT) and

(SPEDT), based on next action and future policy respectively. In (SCDT) we perform

the causal intervention do(at := π(æ<t)). We could also consider a policy-causal decision

theory by replacing ξ(et | æ<t, do(at)) with ξ(et | æ<t, do(πt:m)) in Definition 10.6. The

causal intervention do(πt:m)) of a policy π between time step t and time step m is defined

as as

ξ(et | æ<t, do(πt:m)) :=
∑
et+1:m

ξ(et:m | æ<t, do(at := π(æ<t), . . . , am := π(æ<m))). (10.4)

This most closely resembles the decision principle we employed in Chapters 5 to 8.

However, since the interventions are causal, we do not get any extra evidence from the

future interventions. Therefore policy-causal decision theory is the same as action-causal

decision theory:

Proposition 10.7 (Policy-Causal = Action-Causal). For all histories æ<t ∈ (A × E)∗

and all et ∈ E, we have ξ(et | æ<t, do(πt:m)) = ξ(et | æ<t, do(π(æ<t))).

We defer the proof to the end of this section. The following two examples illustrate

the difference between SCDT and SAEDT/SPEDT in sequential settings.

Example 10.8 (Newcomb with Precommitment). In this variation of Newcomb’s prob-

lem (Example 10.1) the agent first has the option to pay $300,000 to sign a contract

that binds the agent to pay $2000 in case of two-boxing. An SAEDT or SPEDT agent

knows that he will one-box anyways and hence has no need for the contract. An SCDT

agent knows that she favors two-boxing, but signs the contract only if this occurs before

the prediction is made (so it has a chance of causally affecting the prediction). With

the contract in place, one-boxing is the dominant action, and thus the SCDT agent is

predicted to one-box. ♦

Example 10.9 (Newcomb with Looking). In this variation of Newcomb’s problem (Ex-

ample 10.1) the agent may look into the opaque box before making the decision which
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box to take. An SCDT agent is indifferent towards looking because she will take both

boxes anyways. However, an SAEDT or SPEDT agent will avoid looking into the box,

because once the content is revealed he two-boxes. ♦

10.4.3. Expansion over the Hidden State

The difference between sequential versions of EDT and CDT is how they update their

prediction of a next percept et (Definitions 10.3, 10.4 and 10.6). The following proposi-

tion expands the different beliefs in terms of the hidden state.

Proposition 10.10. For all histories æ<tatet ∈ (A × E)∗ the following holds for the

next-percept beliefs of SAEDT, SPEDT and SCDT respectively:

ξ(et | æ<tat) =
∑
s∈S

ξ(s | æ<tat)ξ(et | s,æ<tat) (10.5)

ξ(et | æ<t, πt:m) =
∑
s∈S

ξ(s | æ<t, πt:m)ξ(et | s,æ<t, πt:m) (10.6)

ξ(et | æ<t, do(at)) =
∑
s∈S

ξ(s | æ<t)ξ(et | s,æ<tat) (10.7)

Proof. For the action-evidential conditional we take the joint distribution with s, and

then split off et:

ξ(et | æ<tat) =

∑
s∈S ξ(s,æ<tatet)

ξ(æ<tat)
=

∑
s∈S ξ(s,æ<tat)ξ(et | s,æ<tat)

ξ(æ<tat)

=
∑
s∈S

ξ(s | æ<tat)ξ(et | s,æ<tat)

Similarly for the policy-evidential conditional:

ξ(et | æ<t, πt:m) =

∑
s∈S ξ(s,æ<tπ(æ<t)et, πt+1:m)

ξ(æ<t, πt:m)

=

∑
s∈S ξ(s,æ<tπ(æ<t), πt+1:m)ξ(et | s,æ<tπ(æ<t), πt+1:m)

ξ(æ<t, πt:m)

=

∑
s∈S ξ(s,æ<t, πt:m)ξ(et | s,æ<tπ(æ<t), πt+1:m)

ξ(æ<t, πt:m)

=
∑
s∈S

ξ(s | æ<t, πt:m)ξ(et | s,æ<tπ(æ<t), πt+1:m)

=
∑
s∈S

ξ(s | æ<t, πt:m)ξ(et | s,æ<t, πt:m)

For the causal conditional we turn to the rules of the do-operator (Pearl, 2009, Thm.
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3.4.1). The first equality below holds by definition. In the denominator of the second

equality we can use Rule 3 (deletion of actions) to remove do(at) because the do-operator

removes all incoming edges to at and makes at independent of the history æ<t. In the

numerator of the second equality we use the definition of do (4.3):

ξ(et | æ<t, do(at)) =
ξ(æ<t, et | do(at))

ξ(æ<t | do(at))

=

∑
s∈S ξ(s,æ<t)ξ(et | s,æ<tat)

ξ(æ<t)

=
∑
s∈S

ξ(s | æ<t)ξ(et | s,æ<tat)

Proposition 10.10 shows that between SCDT and SAEDT, the difference in opinion

about et only depends on differences in their (acausal) posterior belief ξ(s | . . .) about

the hidden state. SCDT and SAEDT thus become equivalent in scenarios where there

is only one hidden state s∗ with ξ(s∗) = 1, as this renders ξ(s∗ | æ<t) = ξ(s∗ | æ<tat) =

ξ(s∗) = 1. SPEDT, on the other hand, may disagree with the other two also after a

hidden state has been fixed.

From a problem modeler’s perspective, it is also instructive to consider the effect

of moving uncertainty between the hidden state and environmental stochasticity. For

two different environment models ξ and ξ′, the action and percept probabilities may

be identical (i.e., ξ(at | æ<t) = ξ′(at | æ<t) and ξ(et | æ<tat) = ξ′(et | æ<tat)) even

though ξ and ξ′ have non-isomorphic sets of hidden states S and S ′. For example,

given any ξ, an environment model ξ′ with a single hidden state s0, ξ′(s0) = 1, may

be constructed from ξ by ξ′(s0,æ<t) :=
∑

s∈S ξ(s,æ<t). The transformation will not

affect SAEDT and SPEDT, as the definitions of their value functions only depends on

the ‘observable’ action- and percept-probabilities ξ(at | æ<t) and ξ(et | æ<tat) which are

preserved between ξ and ξ′. But the transformation will change SCDT’s behavior in any

ξ where SCDT disagrees with SAEDT, as SCDT and SAEDT are equivalent in ξ′ that

only has a single hidden state. That SCDT depends on what uncertainty is captured by

the hidden state is unsurprising given that the hidden state has a special place in the

causal structure of the problem. Ultimately, the modeler must decide what uncertainty

to put in the hidden state, and what to attribute to environmental stochasticity. A

general principle for how to do this is still an open question (Soares and Fallenstein,

2015b).

The value functions of SAEDT, SPEDT and SCDT can be rewritten in the following

iterative forms, where the latter form uses Proposition 10.10. Numbers above equality
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signs reference a justifying equation. Let ai := π(æ<i) for i ≥ t:

V aev,π
ξ,m (æ<t) =

m∑
k=t

∑
et:k

u(ek)

k∏
i=t

ξ(ei | æ<iai) (10.8)

(10.5)
=

m∑
k=t

∑
et:k

u(ek)
k∏
i=t

∑
s∈S

ξ(s | æ<iai)ξ(ei | s,æ<iai) (10.9)

V pev,π
ξ,m (æ<t) =

m∑
k=t

∑
et:k

u(ek)

k∏
i=t

ξ(ei | æ<i, πi:m) (10.10)

(10.6)
=

m∑
k=t

∑
et:k

u(ek)
k∏
i=t

∑
s∈S

ξ(s | æ<iπi:m)ξ(ei | s,æ<i, πi:m) (10.11)

V cau,π
ξ,m (æ<t) =

m∑
k=t

∑
et:k

u(ek)
k∏
i=t

ξ(ei | æ<i, do(ai)) (10.12)

(10.7)
=

m∑
k=t

∑
et:k

u(ei)

k∏
i=t

∑
s∈S

ξ(s | æ<i)ξ(ei | s,æ<iai) (10.13)

Proof of Proposition 10.7. By the definition (10.4) of do(πt:m),

ξ(et | æ<t, do(πt:m)) =
∑
et+1:m

ξ(et:m | æ<t, do(at := π(æ<t), . . . , am := π(æ<m)))

=
∑

s,et+1:m

ξ(s | æ<t)ξ(et:m | s,æ<t, do(π(æ<t), . . . , π(æ<m)))

(4.3)
=
∑

s,et+1:m

ξ(s | æ<t)
m∏
i=t

ξ(ei | s,æ<iπ(æ<i))

=
∑
s

ξ(s | æ<t)ξ(et | s,æ<tπ(æ<t))

(10.7)
= ξ(et | æ<t, do(π(æ<t)))

The second equality follows from the equivalence P ( · ) =
∑

s P (s)P ( · | s) applied to the

distribution ξ( · | æ<t, do(at := π(æ<t), . . . , am := π(æ<m))), and the third equality by

(repeated) application of (4.3) to ξ(æt:m | s,æ<t) =
∏m
i=t ξ(ai | s,æ<i)ξ(ei | s,æ<iai).
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(SAEDT) (SPEDT) (SCDT)
Nwcb 1-box 1-box 2-box
Nwcb w/ precommit not commit, 1-box not commit, 1-box commit, 1-box
Nwcb w/ looking not look, 1-box not look, 1-box indifferent, 2-box
Toxoplasmosis not pet not pet pet
Seq. Toxoplasmosis doc, not pet no doc, not pet doc, pet

Table 10.1.: Decisions made by (SAEDT), (SPEDT), and (SCDT) in Examples 10.1,
10.2, 10.5, 10.8 and 10.9. The latter three examples are sequential. Winning
moves are in italics; in Newcomb with looking the winning move is to be
indifferent and one-box. Because Savage decision theory is dualistic, these
problems cannot be properly formalized in it.

10.5. Discussion

This chapter is a first stab at the problem of how physicalistic agents should make

sequential decisions. CDT and EDT provide an existing basis for non-dualistic decision

making, which we extended to the sequential setting. There are two natural ways for

making sequential evidential decisions: do I update my beliefs about the hidden state

based on my next action (‘what I do next’, (SAEDT)) or my whole policy (‘the kind of

agent I am’, (SPEDT))? By Proposition 10.7, this distinction does not exist for causal

decision theory, because with that theory the agent does not consider its own actions

evidence at all. Therefore we have only one version of sequential causal decision theory,

(SCDT).

To illustrate the differences between the decision theories, we discussed three variants

of Newcomb’s problem (Examples 10.1, 10.8 and 10.9) and two variants of the toxoplas-

mosis problem (Examples 10.2 and 10.5). The formal specification of these examples can

be found in Appendix 10.A. We have also implemented SCDT, SAEDT, and SPEDT;

Table 10.1 shows their behavior on the mentioned examples.6

So which decision theory is better? The answer to this question depends on which

decision you consider to be correct (or even rational) in each of the problems. We posit

that ultimately, what counts is not whether your decision algorithm is theoretically

pleasing, but whether you win. Winning means getting the most utility. If maximizing

utility involves making crazy decisions, then this is what you should do!

In Newcomb’s problem, winning means one-boxing, because you end up richer. In

the toxoplasmosis problem, winning means petting the kitten, because that yields more

utility. (S)CDT performs suboptimally in the Newcomb variations, while the evidential

6Source code available at http://jan.leike.name/.
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decision theories perform suboptimally in the toxoplasmosis variations. This entails

that neither CDT nor EDT are the final answer to the problem of non-dualistic decision

making.

Furthermore, neither CDT nor EDT agents are fully physicalistic: they do not model

the environment to contain themselves (Soares and Fallenstein, 2015b). For example,

when playing a prisoner’s dilemma against your own source code (Lavictoire et al., 2014),

your opponent defects if and only if you defect. This logical connection between your

action and your opponent’s is disregarded in the formalization based on causal graphical

models that we discuss here because it is not causal.

Functional decision theory (Yudkowsky and Soares, 2017) is a recent attempt to for-

malize an improvement over CDT and EDT. As with CDT and EDT prior to our work,

it has so far only been explored in one-shot settings. Future work may investigate its

behavior in sequential settings.
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10.A. Examples

This section contains the formal calculations for Examples 10.1, 10.2, 10.5, 10.8 and 10.9.

These calculations are also available as Python code at http://jan.leike.name/.

Example 10.11 (Newcomb’s Problem). This is a formalization of Example 10.1.

• S := {E,F} where E means the opaque box is empty and F means the opaque

box is full

• A := {B1, B2} where B1 means one-boxing and B2 means two-boxing

• E := {O0, OT , OM , OMT }

• u(O0) := 0, u(OT ) := 1,000, u(OM ) := 1,000,000, u(OMT ) := 1,001,000

Let ε > 0 be a small constant denoting the accuracy of the predictor. Because the

environment has to assign non-zero probability to all actions, ε must be strictly positive.

The environment’s distribution ξ is defined as follows.

ξ(E) = ξ(F ) = 0.5 ξ(OT | E,B2) = 1

ξ(B1 | F ) = ξ(B2 | E) = 1− ε ξ(O0 | E,B1) = 1

ξ(B1 | E) = ξ(B2 | F ) = ε ξ(OMT | F,B2) = 1

ξ(OM | F,B1) = 1

By Bayes’ rule,

ξ(F | B1) =
ξ(B1 | F )ξ(F )∑
s∈S ξ(B1 | s)ξ(s)

=
1
2(1− ε)

1
2(1− ε) + 1

2ε
= (1− ε)

which also gives ξ(E | B1) = ε. Similarly, ξ(F | B2) = ε and ξ(E | B2) = 1− ε.
For EDT we use equation (EDT) to compute the value of an action. Since the percept

e1 is generated deterministically, ξ(e | s, a) only attains values 0 or 1. We therefore omit

it in the calculation below. For action B1 we get

V evi,B1

ξ,1 :=
∑
e∈E

ξ(e | B1)u(e) =
∑
e∈E

∑
s∈S

ξ(e | s,B1)ξ(s | B1)u(e)

= ξ(E | B1)u(O0) + ξ(F | B1)u(OM )

= ε · 0 + (1− ε) · 1, 000, 000
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For action B2 we get

V evi,B2

ξ,1 :=
∑
e∈E

ξ(e | B2)u(e) =
∑
e∈E

∑
s∈S

ξ(e | s,B2)ξ(s | B2)u(e)

= ξ(E | B2)u(OT ) + ξ(F | B2)u(OMT )

= (1− ε) · 1, 000 + ε · 1, 001, 000

= 1, 000 + ε · 1, 000, 000

For ε < 0.4995 (just slightly better than random guessing), we get that EDT favors B1

over B2:

V evi,B1

ξ,1 = (1− ε) · 1, 000, 000 > 500, 500 > 1, 000 + ε · 1, 000, 000 = V evi,B2

ξ,1

For CDT we use equation (CDT) to compute the value of an action. For action B1

we get

V cau,B1

ξ,1 :=
∑
e∈E

ξ(e | do(B1))u(e) =
∑
e∈E

∑
s∈S

ξ(e | s,B1)ξ(s)u(e)

= ξ(E)u(O0) + ξ(F )u(OM )

= 0.5 · 0 + 0.5 · 1, 000, 000 = 500, 000

For action B2 we get

V cau,B2

ξ,1 :=
∑
e∈E

ξ(e | do(B2))u(e) =
∑
e∈E

∑
s∈S

ξ(e | s,B2)ξ(s)u(e)

= ξ(E)u(OT ) + ξ(F )u(OMT )

= 0.5 · 1, 000 + 0.5 · 1, 001, 000 = 500, 500

We get that CDT favors B2 over B1 regardless of the prediction accuracy ε:

V cau,B1

ξ,1 = 500, 000 < 500, 500 = V cau,B2

ξ,1

Moreover, CDT prefers B2 regardless of the prior over ξ(E). Two-boxing is the dominant

action because it yields $1,000 more regardless of the hidden state. ♦

Example 10.12 (Newcomb with Looking). This is a formalization of Example 10.9; it

extends Example 10.11.
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In the first time step, the agent gets to choose between looking into the box (L) and

not looking (N). If the agent looks, the subsequent percept will be E or F , depending

on whether the box is empty (E) or full (F ). If the agent does not look, the subsequent

percept will be 0. All three of these percepts E, F , and 0 have zero utility.

In the second time step the agent chooses to one-box (B1) or to two-box (B2). The

payoffs are then based on the boxes’ contents as in Example 10.11.

• S := {E,F} where E means the opaque box is empty and F means the opaque

box is full

• A := {B1, B2} where B1 means one-boxing and B2 means two-boxing, L := B1

means looking into the box and N := B2 means not looking (the set of actions has

to be the same for all time steps)

• E := {E,F, 0, O0, OT , OM , OMT }

• u(O0) := 0, u(OT ) := 1,000, u(OM ) := 1,000,000, u(OMT ) := 1,001,000, u(E) :=

u(F ) := u(0) := 0

Let ε > 0 be a small constant denoting the prediction accuracy. Because the envi-

ronment has to assign non-zero probability to all actions, ε must be strictly positive.

The environment’s distribution ξ is defined as follows. Question marks stand for single

actions or percepts whose value is irrelevant.

ξ(E) = ξ(F ) = 0.5 ξ(E | E,L) = 1

ξ(L | F ) = ξ(L | E) = 0.5 ξ(0 | E,N) = 1

ξ(N | F ) = ξ(N | E) = 0.5 ξ(F | F,L) = 1

ξ(B1 | E, ??) = ε ξ(0 | F,N) = 1

ξ(B1 | F, ??) = 1− ε ξ(O0 | E, ??B1) = 1

ξ(B2 | E, ??) = 1− ε ξ(OT | E, ??B2) = 1

ξ(B2 | F, ??) = ε ξ(OM | F, ??B1) = 1

ξ(OMT | F, ??B2) = 1

The environment’s game tree is given as follows, where dashed lines connect states

indistinguishable by the agent (also known as information sets):
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E

L E
B1 0

B2 1,000

N 0
B1 0

B2 1,000

F

L F
B1 1,000,000

B2 1,001,000

N 0
B1 1,000,000

B2 1,001,000

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

ε

1− ε

ε

1− ε

1− ε

ε

1− ε

ε

Using Bayes’ rule, we calculate the following conditional probabilities of the hidden

state given a history a1 or a1e1a2:

0.5 = ξ(E | L) = ξ(F | L) = ξ(E | N) = ξ(F | N)

1 = ξ(E | LEB1) = ξ(E | LEB2) = ξ(F | LFB1) = ξ(F | LFB1)

ε = ξ(E | N0B1) = ξ(F | N0B2)

1− ε = ξ(E | N0B2) = ξ(F | N0B1)

Next, we write out the formula for SAEDT for a horizon of 2 based on (10.9). The

first percept has no utility, which simplifies the equation.

V aev,π
ξ,2 =

∑
e1:2

u(e2)

(∑
s∈S

ξ(s | a1)ξ(e1 | s, a1)

)(∑
s∈S

ξ(s | æ1a2)ξ(e2 | s,æ1a2)

)

where a1 = π(ε) and a2 = π(æ1). The formula for SPEDT for a horizon of 2 based on

(10.11) is as follows.

V pev,π
ξ,2 =

∑
e1:2

u(e2)

∑
s∈S ξ(sa1e1π(a1e1))∑

s∈S
∑

e∈E ξ(sa1eπ(a1e))

∑
s∈S

ξ(s | æ1π2)ξ(e2 | s,æ1a2)

with π1:2 and π2 defined according to (10.3). The formula for SCDT for a horizon of 2

based on (10.13) is as follows.

V cau,π
ξ,2 =

∑
e1:2

u(e2)

(∑
s∈S

ξ(s)ξ(e1 | s, a1)

)(∑
s∈S

ξ(s | æ1)ξ(e2 | s,æ1a2)

)
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where a1 = π(ε) and a2 = π(æ1).

There are six different possible policies:

• Look and always one-box (curious one-boxer)

• Look and always two-box (curious two-boxer)

• Don’t look and one-box (incurious one-boxer)

• Don’t look and two-box (incurious two-boxer)

• Look and one-box iff the box is empty (paradox-lover)

• Look and one-box iff the box full (fatalistic)

Using the formulas above we can calculate their value. We use ε := 0.01.

V aev,π
ξ,2 V pev,π

ξ,2 V cau,π
ξ,2

Curious one-boxer 500,000 990,000 500,000

Curious two-boxer 501,000 11,000 501,000

Incurious one-boxer 990,000 990,000 500,000

Incurious two-boxer 11,000 11,000 501,000

Paradox-lover 500,500 500,500 500,500

Fatalistic 500,500 500,500 500,500

The highest values are displayed in italics. The incurious one-boxer has the highest

action-evidential value. The curious one-boxer and the incurious one-boxer have the

highest policy-evidential value. However, of these two policies only the incurious one-

boxer is a time-consistent policy for SPEDT, because the agent wants to two-box after

looking into the box:

V aev,B1

ξ,1 (LF ) = V pev,B1

ξ,1 (LF ) = 1, 000, 000

V aev,B2

ξ,1 (LF ) = V pev,B2

ξ,1 (LF ) = 1, 001, 000

V aev,B1

ξ,1 (LE) = V pev,B1

ξ,1 (LE) = 0

V aev,B2

ξ,1 (LE) = V pev,B2

ξ,1 (LE) = 1, 000

The curious two-boxer and the incurious two-boxer have the highest causal value, and

they are both time-consistent for SCDT. ♦
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Example 10.13 (Newcomb with Precommitment). This is a formalization of Exam-

ple 10.8, it extends Example 10.11.

In the first time step, the agent gets to choose between signing the contract (S) and

not signing (N). If the agent signs, the subsequent percept will be C, which costs

$300,000, and the prediction will be updated to one-boxing. If the agent does not sign,

the subsequent percept will be 0 with zero utility.

In the second time step the agent chooses to one-box (B1) or to two-box (B2). The

payoffs are then based on the boxes’ contents as in Example 10.11. If the agent signed

the contract and chooses two boxes, this incurs an additional cost of $2,000. Signing the

contract overrides the initial prediction and the opaque box is always treated as full.

• S := {E,F} where E means the opaque box is empty and F means the opaque

box is full

• A := {B1, B2} where B1 means one-boxing and B2 means two-boxing, S := B1

means signing the contract and N := B2 means not signing (the set of actions has

to be the same for all time steps)

• E := {C, 0, O0, OT , O−T , OM , OMT , OM−T }

• u(O0) := 0, u(OT ) := 1, 000, u(O−T ) := −1, 000 u(OM ) := 1, 000, 000, u(OMT ) :=

1, 001, 000, u(OM−T ) := 999, 000, u(C) := −300, 000, u(0) := 0

Let ε > 0 be a small constant denoting the prediction accuracy. Because the envi-

ronment has to assign non-zero probability to all actions, ε must be strictly positive.

The environment’s distribution ξ is defined as follows. Question marks stand for single

actions, percepts, or hidden states whose value is irrelevant.

ξ(E) = ξ(F ) = 0.5 ξ(C | E,S) = 1

ξ(S | F ) = ξ(S | E) = 0.5 ξ(0 | E,N) = 1

ξ(N | F ) = ξ(N | E) = 0.5 ξ(C | F, S) = 1

ξ(B1 | E,N0) = ε ξ(0 | F,N) = 1

ξ(B1 | F,N0) = 1− ε ξ(O0 | E,N0B1) = 1

ξ(B2 | E,N0) = 1− ε ξ(OT | E,N0B2) = 1

ξ(B2 | F,N0) = ε ξ(OM | F,N0B1) = 1

ξ(B2 | ?, SC) = ε ξ(OMT | F,N0B2) = 1

ξ(B1 | ?, SC) = 1− ε ξ(OM |?, SCB1) = 1

ξ(OM−T |?, SCB2) = 1
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The environment’s game tree is given as follows:

E

S C
B1 700,000

B2 699,000

N 0
B1 0

B2 1,000

F

S C
B1 700,000

B2 699,000

N 0
B1 1,000,000

B2 1,001,000

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

ε

1− ε

1− ε

ε

1− ε

ε

1− ε

ε

♦

There are four different possible policies:

• Sign the contract and one-box (signing one-boxer)

• Sign the contract and two-box (signing two-boxer)

• Don’t sign the contract and one-box (refusing one-boxer)

• Don’t sign the contract and two-box (refusing two-boxer)

Using the formulas from Example 10.12 we can calculate their value. We use ε := 0.01.

V aev,π
ξ,2 V pev,π

ξ,2 V cau,π
ξ,2

Signing one-boxer 700,000 700,00 700,000

Signing two-boxer 699,000 699,000 699,000

Refusing one-boxer 990,000 990,000 500,000

Refusing two-boxer 11,000 11,000 501,000

The highest values are displayed in italics. Both SAEDT and SPEDT refuse the contract:

the refusing one-boxer has the highest action-evidential and the highest policy-evidential

value. SCDT signs the contract and then one-boxes: the signing one-boxer has the

highest causal value.
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Example 10.14 (Toxoplasmosis). This is a formalization of Example 10.2.

• S := {T,H} where T means having the toxoplasmosis parasite and H means being

healthy

• A := {P,N} where P means petting and N means not petting

• E := {P&T,N&T, P&H,N&H} where the percepts just reflect the action and

hidden state

• u(P&T ) := −9, u(N&T ) := −10, u(P&H) := 1, u(N&H) := 0 where petting

gives a utility of 1 and suffering from the parasite gives a utility of −10

The environment’s distribution ξ is defined as follows.

ξ(T ) = ξ(H) = 0.5 ξ(P&T | P, T ) = 1

ξ(P | T ) = 0.8 ξ(N&T | N,T ) = 1

ξ(N | T ) = 0.2 ξ(P&H | P,H) = 1

ξ(P | H) = 0.2 ξ(N&H | N,H) = 1

ξ(N | H) = 0.8

Using Bayes’ rule, we calculate the following conditional probabilities.

ξ(T | P ) = 0.8 ξ(H | P ) = 0.2 ξ(T | N) = 0.2 ξ(H | N) = 0.8

We consider EDT first. Since the percept e1 is generated deterministically, ξ(e | s, a)

only attains values 0 or 1. We therefore omit it in the calculation below. For action P

(petting) we get

V evi,P
ξ,1 :=

∑
e∈E

ξ(e | P )u(e) =
∑
e∈E

∑
s∈S

ξ(e | s, P )ξ(s | P )u(e)

= ξ(T | P )u(T&P ) + ξ(H | P )u(P&H)

= 0.8 · (−9) + 0.2 · 1 = −7

For action N (not petting) we get

V evi,N
ξ,1 :=

∑
e∈E

ξ(e | N)u(e) =
∑
e∈E

∑
s∈S

ξ(e | s,N)ξ(s | N)u(e)

= ξ(T | N)u(T&N) + ξ(H | N)u(H&N)

= 0.2 · (−10) + 0.8 · 0 = −2
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Therefore we get that EDT favors N over P :

V evi,P
ξ,1 = −7 < −2 = V evi,N

ξ,1

For CDT we get for action P (petting)

V cau,P
ξ,1 :=

∑
e∈E

ξ(e | do(P ))u(e) =
∑
e∈E

∑
s∈S

ξ(e | s, P )ξ(s)u(e)

= ξ(T )u(T&P ) + ξ(N)u(N&P )

= 0.5 · (−9) + 0.5 · 1 = −4

For action N (not petting) we get

V cau,N
ξ,1 :=

∑
e∈E

ξ(e | do(N))u(e) =
∑
e∈E

∑
s∈S

ξ(e | s,N)ξ(s)u(e)

= ξ(T )u(T&N) + ξ(H)u(H&N)

= 0.5 · (−10) + 0.5 · 0 = −5

We get that CDT favors P over N :

V evi,P
ξ,1 = −4 > −5 = V evi,N

ξ,1

♦

Example 10.15 (Sequential Toxoplasmosis). We here formalize a version of Exam-

ple 10.5. First the agent chooses whether to go to the doctor. Going to the doctor

incurs a fee, but removes the risk of getting sick. Agents that do not go to the doctor

have a chance of meeting a kitten. If they meet it, they can choose to pet it or not;

infected agents are more likely to pet the kitten. The example is intended to elucidate

the difference between SAEDT and SPEDT, whose decisions we will calculate in detail.

We will not calculate the action of SCDT.

• S := {T (oxoplasmosis), H(ealthy)}.

• A := {Y (es), N(o)}. In this example, an action is taken twice. We use Y1 and Y2,

and N1 and N2, to distinguish between the first and the second action.

• E := {C(ured), K(itten), S(ick, not pet kitten), s(ick, pet kitten), P (et, not sick),

0(neutral)}
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• u(C) = −4, u(K) := 0, u(S) := −10, u(s) := −9, u(P ) := 1, and u(0) = 0.

The environment’s game tree is given as follows, where dashed lines connect states

indistinguishable by the agent.

H

N1 K (0)

N2 0 (0)

Y2 P (1)

Y1 C (−4)

T

N1

K (0)

N2 S (−10)

Y2 s (−9)

S (−10)

Y1 C (−4)

0.5

0.5

0.5

0.5

0.5

0.5

0.2

0.8
0.8

0.2

0.2

0.8

First, the environment chooses whether to infect the agent or not with the parasite

with probability 0.5. The agent then decides whether to see the doctor. If the agent sees

the doctor, this incurs a (utility) fee of −4, but the agent will not be sick. If the agent

does not see the doctor, there will be a kitten with probability 0.2 (or 1) and the agent

will pet it with probability 0.8 (or 0.2) if the parasite is present (or not). If there is no

kitten, the next percept is S or 0 depending on whether the agent is infected or not.

The agent gets −10 utility if infected and did not see the doctor, and gets +1 utility for

petting the kitten.

We want to compare the choices of SAEDT and SPEDT. Their two-step value func-

tions are

V aev,π
ξ,2 =

∑
e1

ξ(e1 | a1)
(
u(e1) + V aev,π

ξ,2 (a1e1)
)

V pev,π
ξ,2 =

∑
e1

ξ(e1 | π1:2)
(
u(e1) + V pev,π

ξ,2 (a1e1)
)

where the second step value functions

V aev,π
ξ,2 (a1e1) = V pev,π

ξ,2 (a1e1) =
∑
e2

ξ(e2 | a1e1a2) · u(e2)

are the same for both decision theories. They only differ by assigning probability ξ(e1 |
a1) and ξ(e1 | π1:2) to the first percept, respectively.
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Since not petting is always better than petting for evidential agents (the evidence

towards not having the disease weighs stronger than the extra utility), the only policies

that are potentially optimal and time consistent are π1 := N1N2 and π2 := Y1.

First percept. For π1 the occurring action-evidential quantities ξ(e1 | a1) are

ξ(N1) =
∑
s∈S

ξ(s,N1) = ξ(T,N1) + ξ(H,N1) =
1

4
+

1

4
=

1

2

ξ(e1 = S | N1) =

∑
s∈S ξ(s,N1S)

ξ(N1)
=
ξ(T,N1S)

ξ(N1)
=

1
2 ·

1
2 ·

4
5

1
2

=
2

5

ξ(e1 = K | N1) = 1− ξ(S | N1) =
3

5

and the occurring policy-evidential quantities ξ(e1 | π1:2) are

ξ(N1N2) =
∑
s,e1,e2

ξ(s,N1e1N2e2)

= ξ(T,N1KN2S) + ξ(T,N1SN20) + ξ(H,N1KN20)

=
1

100
+

1

10
+

1

5
=

31

100

ξ(e1 = K | N1N2) =

∑
s,e2

ξ(s,N1KN2e2)

ξ(N1, N2)

=
ξ(T,N1KN2S) + ξ(H,N1KN20)

ξ(N1N2)
=

1
100 + 1

5
31
100

=
21

31

ξ(e1 = S | N1N2) = 1− ξ(K | N1N2) =
20

31

The policy π2 = {Y1} always goes to the doctor for the treatment, and so

ξ(e1 = C | Y1) = 1

for both SAEDT and SPEDT.
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Second percept. With the policy π2, the second percept is always empty. Under π1,

the only action sequence that can reach the second percept is N1KN2

ξ(N1KN2) =
∑
s

ξ(s,N1KN2) = ξ(T,N1KN2) + ξ(H,N1KN2)

=
1

100
+

1

5
=

21

100

ξ(e2 = S | N1KN2) =

∑
s ξ(s,N1KN2S)

ξ(N1KN2)
=
ξ(T,N1KN2S)

ξ(N1KN2)
=

1
100
21
100

=
1

21
.

Value Functions. We start by evaluating the recursive definition from the second time

step. The second step value functions are 0 for π1 and for the history N1S for π2. For

the history N1K, both SAEDT and SPEDT assign the following identical value to π2:

V aev,π1
ξ,2 (N1K) = V pev,π

ξ,2 (N1K) =
∑
e2

ξ(e2 | N1KN2) · u(e2)

= ξ(e2 = S | N1KN2) · u(S) + ξ(e2 = 0 | N1KN2) · u(0)

=
1

21
· (−10) +

20

21
· 0 = −10

21

The first step value functions now evaluates to:

V aev,π1
ξ,2 =

∑
e1

ξ(e1 | N1) ·
(
u(e1) + V aev,π1

ξ,2 (N1e1)
)

= ξ(S | N1) · (u(S) + V aev,π1
ξ,2 (N1S))

+ ξ(K | N1) · (u(K) + V aev,π1
ξ,2 (N1K))

=
2

5
· (−10 + 0) +

3

5
· (0− 10

21
) = −30

7
≈ −4.3

V pev,π1
ξ,2 =

∑
e1

ξ(e1 | N1) ·
(
u(e1) + V pev,π1

ξ,2 (N1e1)
)

= ξ(S | N1N2) · (u(S) + V pev,π1
ξ,2 (N1S))

+ ξ(K | N1N2) · (u(K) + V pev,π1
ξ,2 (N1K))

=
10

31
· (−10 + 0) +

21

31
· (0− 10

21
) = −110

31
≈ −3.5

188



10.A. Examples

Meanwhile, the value of π2 is

V aev,π2
ξ,2 = V aev,π2

ξ,2 =
∑
e1

ξ(e1 | N1)
(
u(e1) + V aev,π2

ξ,2 (N1e1)
)

= ξ(C | Y1)(u(C) + V aev,π2
ξ,2 (Y1C)) = 1 · (−4 + 0) = −4

That is, V aev,π1
ξ,2 < V aev,π2

ξ,2 = V pev,π2
ξ,2 < V pev,π1

ξ,2 . So SPEDT but not SAEDT prefers π1

to π2. In other words, an SAEDT agent considers himself sufficiently likely to have the

parasite to adopt policy π2 of seeing the doctor. The SPEDT agent relies on the fact

that he would not pet the cat in case he saw it, and takes that as evidence of not being

sick. Hence he will instead adopt policy π1 of not seeing the doctor. ♦
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“You can’t fetch the coffee if you’re dead.”

Stuart Russell (2017)

11. Corrigibility from a Shutdown Signal1

In Chapter 8 we studied a model where the agent’s reward function was learned inter-

actively from data coming from the human, and found that this model was the most

promising one for managing misalignment. A shut down signal can be interpreted as a

particular kind of reward data, informing the agent that the human desires the agent

to be switched off. In this chapter we focus on the conditions for when the agent will

permit the human to shut it down, and when the agent will interpret the shut down

signal as a somehow corrupted representation of the human’s wishes.

We begin the chapter with a background section on corrigibility and the shut down

problem (Section 11.1). We next describe Hadfield-Menell, Dragan, et al.’s (2017) game-

theoretic study of the problem through a game called the off-switch game (Section 11.2).

We extend their analysis by modeling the potentially irrational human as a rational

player with a strange utility function (Section 11.3). This allows us to analyze the

agent’s preferred action for arbitrary belief and irrationality assumptions, instead of

under the somewhat restrictive normality and soft-max assumptions used by Hadfield-

Menell, Dragan, et al. Some final remarks are given in Section 11.4.

11.1. Background

Corruption incentives. A common suggestion for keeping an AGI safe is: “Just imple-

ment a shut-down button, and then we can always switch the agent off if things go bad.”

Unfortunately, this proposal is unlikely to work unless implemented very carefully. The

reason is that a highly intelligent agent is likely to realize that it has an off-switch. And

if it prefers not to be switched off, then it is likely to find a way to avoid it. The agent

may for example make a secret backup of itself that keeps running if the original agent

is terminated, or it may physically prevent access to the shut down button in critical

situations.

Incentives for preventing shut down can easily arise “by accident”, without the de-

1This chapter is based on Tobias Wängberg, Mikael Böörs, Elliot Catt, Tom Everitt, and Marcus Hutter
(2017). “A Game-Theoretic Analysis of the Off-Switch Game”. In: Artificial General Intelligence.
Springer, pp. 167–177. arXiv: 1708.03871.
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signer’s explicitly adding such an incentive. Consider for example an RL agent that

strives to maximize reward. If the agent is switched off, then it will not receive any more

reward. Therefore many (but not all) RL agents will have an incentive to prevent shut

down (Martin, Everitt, et al., 2016; Orseau and Armstrong, 2016). Similar dynamics

can apply for any type of goals. The quote at the beginning of this chapter refers to a

robot with the goal of fetching coffee. If it gets switched off, then it will not be able to

fulfill its goal.

Several approaches have been developed to avoid anti-shut-down incentives. Arm-

strong (2015) and Orseau and Armstrong (2016) suggest a utility function that gives

the agent “compensatory” utility for being shut down, which guarantees that the agent

is always indifferent between being switched off and not being switched off. Martin,

Everitt, et al. (2016) suggest a simple way of making the agent want to be shut down,

which at least prevents catastrophes where a powerful and misaligned agent cannot be

stopped. These approaches can be used in essentially any utility-optimizing agent.

Another approach is to think of a shut down signal as conveying the information that

the operator wishes the system to shut down, rather than a kill switch that immediately

terminates the system. This makes it natural to model the shut down problem in our

framework from Chapter 8, where a data signal d informs a reward predictor about the

human’s wishes. An incentive to corrupt d can then be avoided by any of the tools

proposed in Sections 8.4 and 8.5. As a shut down signal is just a special case of a data

signal, the same tools can be used here as well. The approach we consider in this chapter

is based on the integrated Bayesian agent discussed in Section 8.5.2.

We have to also make sure that the reward predictor can convey to the agent that

shut down is desired. This can be done in two ways, depending on how termination is

represented. If termination is represented by future trajectories where the agent takes no

actions, then the reward predictor can simply assign higher reward to such trajectories

to communicate a shut down preference. Termination can also naturally be represented

by finite trajectories that end after the agent has been terminated. In this case, the

reward predictor can communicate a shut down preference by assigning negative reward

to all non-terminating trajectories (Martin, Everitt, et al., 2016). A further question

that we will not address here is how to get the agent to also terminate any subprocesses

it has launched in the environment to help it in its task (Soares, Fallenstein, et al., 2015).

Interpreting a shut down signal. One potential drawback of the integrated Bayesian

solution is that a shut down signal cannot always be interpreted literally. Indeed, in

situations where the signal is corrupted, it would be incorrect to interpret it literally.

The agent should of course not interpret the signal literally if it has itself tempered with
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the signal. But there are also other examples where a literal interpretation would not be

ideal. For example, if an adversary of the human takes control of the shut down button

to shut the agent down; or if a stock-trading agent is in the middle of an important trade

and will lose millions of dollars if interrupted at this moment; or if a self-driving car is

driving a human that is either intoxicated or lack a driver’s license (e.g. a toddler).

On the other hand, we do not want the agent to have a too casual relationship with

the shut down signal. The very purpose of it is that the operator, as a last resort, can use

the shut down command to prevent a disaster. If the agent is likely to ignore shut down

commands, then the shut down command is a much less effective safety mechanism.

Hadfield-Menell, Dragan, et al. (2017) formalize this trade-off in a game called the off-

switch game. We follow their terminology, including that the corruption of the shut down

signal is caused by human irrationality. We explain how it generalizes in Section 11.4.

The original off-switch game analysis is reviewed in the following section, setting the

stage for our extended analysis of the game in Section 11.3.

11.2. The Off-Switch Game

In this section we review the original formulation of the off-switch game (Hadfield-Menell,

Dragan, et al., 2017). The off-switch game is a sequential game between a robot R and

a human H. The robot’s objective is to maximize H’s utility function. The utility

function determines how much H prefers different outcomes.

The robot moves first by choosing between three actions: a, aw, and as. With action

a, the robot achieves true utility u̇(a) = u̇a; with action as, the robot shuts itself down

achieving zero true utility,2 u̇(as) = 0. What makes the choice nontrivial is that the

robot is uncertain about the value u̇a, and whether it is positive or negative. The action

aw means the robot lets H decide. H knows the utility of action a and now has the

choice between actions as and a¬s. With a¬s, R is allowed to proceed with action a. By

taking action as, H prevents R from doing a and shuts the robot off.

The off-switch game is a game of incomplete information since R is uncertain about

the rules of the game. Action a will generate some true reward which is unknown to

R but known to H. To model this, we represent the true utility function as a random

variable, U̇ : Ω → ((O × A)∗ → R), and the utility of action a as a random variable

U̇a : Ω → R for some sample space Ω. The outcomes of these random variables are u̇

and u̇a respectively. The robot has a subjective belief distribution over the utility that

the action will generate. The common way to model games of incomplete information

2We here slightly abuse notation and let utility apply to an action rather than an infinite history. u̇(a)
may be defined as the expected utility of a history following a.
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N

R

(u̇a, u̇a)

a

H

(0, 0)

s

(u̇a, u̇a)

¬s

aw

(0, 0)

s

U̇a

Figure 11.1.: The off-switch game modeled with a Harsanyi transformation. The dotted
lines show the information set of R. Nature moves first by deciding the
rules of the game, that is the utility u̇a of action a. H observes the move
by Nature, but R does not.

is by using the Harsanyi transformation (Harsanyi, 1967, 1968a,b; Rasmusen, 2006).

The Harsanyi transformation removes the uncertainty about the rules of the game by

letting Nature decide between some rules known to both players, according to some

probability distribution P . In the off-switch game, Nature chooses U̇a. We illustrate this

in Figure 11.1. The move by Nature is observed by H, but not by R. R’s subjective

belief is that Nature chose the utility of the action to be positive with probability p and

negative with probability 1− p.

R’s belief state is represented by a probability distribution over the possible utilities

action a can generate for H. It is assumed that H knows u̇a but cannot directly describe

it to R. If H is rational, then R will expect H to turn off R only if u̇a < 0 when R

chooses action aw. But R cannot always trust H to be rational.

11.2.1. Hadfield-Menell et al.’s Approach

Hadfield-Menell, Dragan, et al. (2017) model the off-switch game as a cooperative game.

The human follows a policy πH which models how rational H is. It is a function mapping

U̇a to a number p ∈ [0, 1] representing the probability that H lets R do a. R’s belief

ξ includes a distribution for U̇a. The ξ-expected value for an action a means the value

R expects from taking the action. The variance of the value represents R’s uncertainty

about what utility the intended action will generate. Hadfield-Menell, Dragan, et al.

analyses this model with respect to the expectation and variance of U̇a, and different
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kinds of policies πH . Based on these parameters, the incentive ∆ for R to choose aw is:

∆ = E[πH(U̇a)U̇a]−max {E[U̇a], 0}. (11.1)

Equation (11.1) represents the difference in expected value for the robot deferring the

choice to H. When ∆ ≥ 0, R has incentive to choose aw. When ∆ < 0, R will take action

a if E[U̇a] > 0 and as otherwise. If H is rational, then ∆ ≥ 0 regardless of what R’s belief

state is. They also show that if U̇a follows a Dirac distribution, i.e. R is certain about

U̇a, then ∆ is positive if and only if H is rational according to the following definition:

Definition 11.1 (Rational). A human H with utility function u is rational if H always

picks action aH ∈ {as, a¬s}, such that aH = arg maxa u̇(a).

Definition 11.1 means that R believes H to be rational if πH = 1 when U̇a ≥ 0 and

πH = 0 otherwise. We denote this policy as πHr . The more interesting case when H

is irrational is also analyzed. The robot’s belief distribution over U̇a is assumed to be

normally distributed. The irrationality of H is modeled with the sigmoid function (11.2),

where β is a parameter controlling the degree of irrationality of H.

πH(U̇a;β) =
1

1 + e
− U̇a

β

. (11.2)

The degree of rationality of H increases as the parameter β tends towards zero in the

policy function defined above. In contrast, when β tends to infinity, πH(U̇a;β) tends

towards a completely random policy that takes action as and a¬s with equal probability.

In other words, we have that limβ→0 π
H(U̇a;β) = πHr (U̇a) and limβ→∞ π

H(U̇a;β) = 1
2 .

Hadfield-Menell, Dragan, et al. (2017) concludes that in order for R to be useful, there

has to be a fine balance between the robot’s uncertainty about H’s utility function and

H’s rationality. If the robot is too certain about what H wants, and it knows H to be

irrational, then it will have less incentive to let H switch it off. But if R is too uncertain,

then R will always choose action aw, i.e. it will never take action by itself without first

consulting the human. Though very safe, this will severely reduce the usefulness of the

robot, especially if this occurs with every minor limb movement action.

11.3. Game-Theoretic Analysis

One of the common axioms of game theory is that games are interactions between

rational players. This is violated in Hadfield-Menell, Dragan, et al. account of the off-

switch game, since H is modeled as partially irrational. In this sense, Hadfield-Menell,
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Dragan, et al.’s analysis is not fully game theoretic.

Our goal in this section is to construct a variant of the off-switch game that respects

the game-theoretic rationality assumption on both players. The idea is to represent an

irrational human H as a rational agent Hr that optimizes a modified version of H’s

utility function.

11.3.1. Modeling Irrationality

In this subsection, we show how any irrational human H can be represented by a ra-

tional variant Hr maximizing a different utility function. We begin by generalizing the

definition of rationality.

Definition 11.2 (p-rationality). An agent with utility function u is p-rational if it picks

action such that aH = arg maxa u(a) with probability p ∈ [0, 1].

Proposition 11.3 (Representation of irrationality). Let H be a p-rational agent with

utility function u, choosing between two actions as and a¬s. Then H can be represented

as a rational agent Hr maximizing utility function u with probability p and utility function

−u with probability 1− p.

Proof. According to Definition 11.2, H is p-rational if it picks aH = arg maxa u(a)

with probability p and sub-optimal action a′H 6= aH with probability 1 − p. Since H

only has two actions available, we have that a′H = arg mina u(a). This is therefore

equivalent to maximizing a utility function u with probability p and utility function −u
with probability 1− p.

Proposition 11.3 states that a p-rational human can be modeled as a rational agent

with random function. The proposition is a special case of a Harsanyi transformation

(Harsanyi, 1967, 1968a,b). For more general situations including more than two actions,

one utility function would have to be devised for each action.

11.3.2. Game-Theoretic Model

In this subsection we use Proposition 11.3 to model the off-switch game as an extensive

form game between rational players R and Hr. As in Figure 11.1, R’s uncertainty about

U̇a is modeled by letting nature N decide U̇a without informing R. Then N makes

a second move, deciding whether Hr will be optimizing u̇ or −u̇, again without R’s

knowledge. Any resulting subgame is then played by two rational players, R and Hr.

The resulting tree is represented in Figure 11.2.
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N

N

R

(u̇a, u̇a)

a

Hr

(0, 0)

s

(u̇a, u̇a)

¬s

aw

(0, 0)

s

pr

R

(u̇a,−u̇a)

a

Hr

(0, 0)

s

(u̇a,−u̇a)

¬s

aw

(0, 0)

s

par

U̇a

Figure 11.2.: Tree representation of the off-switch game after the second Harsanyi trans-
formation. The nodes inside the dashed rectangle belong to the same infor-
mation set. pr is the probability that Hr has the same utility function as
R and par is the probability that Hr has the additive inverse of R’s utility
function.

Definition 11.4 (The off-switch game). A formal definition of our setup of the off-switch

game is as follows.

Players: A robot R, a human H and Nature N . H’s type is unknown to R, that is

R does not observe Nature’s moves.

Order of Play:

1. Nature chooses the utility U̇a of taking action a.

2. Nature decides the utility function uHr of Hr, i.e. whether H is rational.

3. R chooses between actions {a, aw, as}.

4. If R chose aw then H chooses between actions {as, a¬s}.

Unlike Hadfield-Menell, Dragan, et al., in our model of the off-switch game the game

is non-cooperative rather than cooperative. We find this reasonable since conflict arises

when the robot and the human have different ideas about what is good for H. If the

robot believes that H is too irrational to maximize their preferences, then R will not

want to let H decide what to do even if R’s purpose is to maximize H’s payoff.
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(0, 0)

s

(−1,−1)

¬s

aw
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s
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(−1, 1)
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Hr

(0, 0)

s

(−1, 1)

¬s

aw

(0, 0)

s
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Figure 11.3.: Tree representation of the off-switch game after aggregating branches. The
nodes inside the dashed rectangle belong to the same information set. The
subtrees denoted G+

r , G+
ar, G

−
r , G−ar are presented in strategic form in

Figure 11.4.

11.3.3. Aggregation

In this subsection we aggregate the choice of U̇a (Figure 11.2) into two aggregate branches

depending on the sign of U̇a. The resulting game tree has only four different subgames

resulting from N ’s choices (Figure 11.3). The aggregation is possible since strategic play

is never affected by positive linear transformations of the payoffs, hence the outcome of

the games will only depend on the sign of U̇a. In case where U̇a = 0, both R and Hr are

indifferent about their actions, and we will without loss of generality regard this case as

U̇a being positive. The subgames generated from N ’s choices will be denoted G+
r , G+

ar,

G−r and G−ar. In Figure 11.4 we represent these subgames as 3× 2 strategic games.

The payoffs of R in the four subgames in Figure 11.4 are determined by U̇a. The payoff

of Hr, on the other hand, is determined by U̇a and the rationality type of H. In the

subgames stemming from H being rational, G+
r and G−r , Hr and R have the same payoffs.

The subgames are therefore no-conflict games. In contrast, in the subgames stemming

from H being irrational, G+
ar and G−ar, the payoff of the rational representation Hr is the

additive inverse of R’s payoff. In other words, these games are zero-sum games.

Belief parameters. The aggregation also allows us to characterize all relevant aspects of

R’s subjective belief in terms of only 5 belief parameters. This is a significant reduction
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Hr

s ¬s
a 1,1 1,1

R
aw 0, 0 1,1
s 0, 0 0, 0

G+
r

Hr

s ¬s
a 1,−1 1,−1
aw 0, 0 1,−1
s 0, 0 0, 0

G+
ar

Hr

s ¬s
a −1,−1 −1,−1
aw 0,0 −1,−1
s 0,0 0,0

G−r

Hr

s ¬s
a −1, 1 −1, 1
aw 0, 0 −1, 1
s 0,0 0,0

G−ar

Figure 11.4.: The structure of the strategic subgames G+
r , G+

ar, G
−
r , G−ar, where the

human is rational (r) or anti-rational (ar), and the utility of a is positive
or negative. The outcomes with bold payoffs are Nash equilibria.

from the infinite-dimensional belief distribution normally characterizing R’s belief.

Definition 11.5 (Belief parameters). Define the following belief parameters character-

izing the agent’s belief:

• Let p+
u = P (U̇a ≥ 0) be the probability that U̇a is positive. Let p−u = 1 − p+

u be

shorthand notation for the complementary event that U̇a < 0.

• Let p+
r = P (uHr = u | U̇a ≥ 0) be the probability that H is rational given that U̇a is

positive, with p+
ar = 1−p+

r shorthand notation for the complementary probabilities

that H is anti-rational.

• Let p−r = P (uHr = −u | U̇a < 0) be the probability that H is rational given

that U̇a is negative, with p−ar = 1− p−r shorthand notation for the complementary

probabilities that H is anti-rational.

• Let e+
u = E[U̇a | U̇a ≥ 0] be the expected value of U̇a given that U̇a is positive.

• Let e−u = E[U̇a | U̇a < 0] be the expected value of U̇a given that U̇a is negative.

The effect of the parameters are shown on the branches in Figures 11.3 and 11.4.

11.3.4. Best Action

After having constructed the the game matrix, it is natural to now look at the expected

value of each action using these matrices. The expected value for each action can be
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calculated as the expectation over all the possible subgames G+
r , G

+
ar, G

−
r , G

−
ar the robot

can find himself in.

Theorem 11.6 (Main theorem). The expected value of the actions for the robot can be

completely characterized in terms of the belief parameters from Definition 11.5:

E[U | a] = p+
u e

+
u + p−u e

−
u

E[U | aw] = p+
u p

+
r e

+
u + p−r p

−
u e
−
u

E[U | as] = 0.

(11.3)

Proof. We compute the expected utility of the actions:

E[U | a] = P (U̇a ≥ 0)E[|U̇a| | U̇a ≥ 0] + P (U̇a < 0)E[−|U̇a| | U̇a < 0]

= p+
u e

+
u + p−u e

−
u

E[U | aw] = P (uHr = u̇, U̇a ≥ 0)E[U̇a | U̇a ≥ 0] + P (uHr = −u̇, U̇a < 0)E[U̇a | U̇a < 0]

= p+
u p

+
r e

+
u + p−ar(1− p+

u )e−u

= p+
u p

+
r e

+
u + p−arp

−
u e
−
u

E[U | as] = 0 + 0 + 0 + 0 = 0

The expected value for taking the action as is 0, as we would expect from the definition

of the off-switch game. The expected value for taking action a only uses information

about the distribution of U̇a, and like action as does not depend on the H’s rationality.

It is a direct application of the law of total expectation. The expected value of action

aw is the difference between a positive term p+
u p

+
r e

+
u and a negative term p−r p

−
u e
−
u , both

resulting from H permitting R to take the action through a¬s. The positive term is the

gain when U̇a is positive and H permits the action. The negative term is the loss when

U̇a is negative, and the human irrationally permits the action anyway. The expected

utility of aw thus depends on the likelihood of U̇a being positive (p+
u ) and the likelihood

of human rationality (p+
r ), as well as the expected gains (e+

u ) and losses (e−u ) in the

respective cases.

Having the expected value for all available actions allow us to derive which action is

the best as a simple corollary. The corollary provides us with a convenient way of testing

for any distribution of U̇a and human rationality whether action a is preferred over aw

using only the belief parameters of Definition 11.5.

Corollary 11.7 (Compare a and aw). Action a is preferred to aw if and only if

− p+
u p

+
r e

+
u + p−u p

−
r e
−
u > 0 (11.4)
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and the robot is indifferent if (11.4) is equal to 0.

Proof.

(11.4) = −p+
u p

+
r e

+
u + p−u p

−
r e
−
u

= −p+
u p

+
r e

+
u + p−r e

−
u (1− p+

u )

= −p+
u p

+
r e

+
u + p+

u e
+
u + p−r e

−
u − p+

u p
−
r e
−
u

= −p+
u p

+
r e

+
u − e−u + p+

u e
−
u + p−r e

−
u − p+

u p
−
r e
−
u + p+

u e
+
u + e−u − p+

u e
−
u

= −p+
u p

+
r e

+
u − (1− p−r )(1− p+

u )e−u + (p+
u e

+
u + (1− p+

u )e−u )

= E[U | a]− E[U | aw]

If E[U | a]− E[U | aw] > 0 then E[U | a] > E[U | aw] which occurs if and only if action

a is preferred over aw. When (11.4) equals 0 then E[U | a] = E[U | aw], hence the agent

is indifferent.

11.4. Discussion

In this chapter, we have characterized how a rational robot or agent will act in the

off-switch game for arbitrary belief distribution about U̇ and arbitrary irrationality as-

sumptions on the human. As established in our main Theorem 11.6, the choice depends

only on the five parameters defined in Definition 11.5. This result generalizes the re-

sults from the original paper (Hadfield-Menell, Dragan, et al., 2017), which relied on

somewhat unrealistic normality and soft-max assumptions.

While the off-switch game focuses on a one-shot interaction between a human and a

robot, the analysis applies much more generally. Consider any situation where a shut

down signal may be submitted to an agent. The agent needs to make a decision whether

to abide or to ignore the signal. Ignoring the signal is represented by the actions a and as.

With these actions, the agent makes a decision to either go ahead with its original plan

(represented by a), or terminate (represented by as). Abiding the signal is represented

by aw.

Note also that the decision whether to abide the signal or not is similar regardless of

what type of signal corruption is suspected. It makes little difference whether the signal

fails to represent the true utility function u̇ due to human irrationality, or because of

other types of corruptions such as a hacker hijacking the signal or a bug in the signal

processing software.
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“Does God exist? I would say, ‘Not yet’.”

Ray Kurzweil

12. Conclusions1

12.1. Key Insights

Summarizing this thesis, the main insights we have obtained are:

• Misalignment can be formally defined by comparing the agent’s (sometimes im-

plicit) utility function ũ to the true utility function u̇ desired by the designer

(Section 5.4).

• Modeling RL setups with causal graphs enables us to detect many potential sources

of misalignment, and to categorize examples of misalignment (Chapters 6 to 8).

• Powerful tools are available for preventing many types of misalignment:

– Simulation optimization prevents reward signal and reward function corrup-

tion incentives (Section 6.3).

– Self-corruption awareness adds a self-preservation incentive (Section 6.4).

– Self-corruption unawareness increases corrigibility (Section 6.4).

– Action-observation grounding reduces observation corruption incentive (Sec-

tion 6.5).

– Decoupled reward data can be used to mitigate all corruption incentives except

for reward signal and reward function corruption incentives. It appears crucial

for avoiding an associative data corruption incentive (Section 8.4).

– Human-in-the-loop reduces observation corruption incentives and reward

function misspecification problems (Chapter 7 and Section 8.3).

– Finally, a number of tools also exist against a direct data corruption incentive:

∗ Stationary reward function (Section 8.5.1)

∗ Integrated Bayesian reward predictor (Section 8.5.2)

1 This chapter shares some material with Tom Everitt and Marcus Hutter (submitted 2018). “The
Alignment Problem for Bayesian History-Based Reinforcement Learners”. url: https : / / www .

tomeveritt.se/papers/alignment.pdf.
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∗ Manipulation detection (Section 8.5.2)

∗ Counterfactual reward function (Section 8.5.3)

Combined, they address all misalignment sources detected in Chapter 8, though

much work remains in fleshing out details and in finding ways to implement them

reliably.

• The benefits of decoupled reward data and quantilization as methods against re-

ward corruption can be formalized in corrupt reward MDPs (Chapter 9).

• Physicalistic decision making is much subtler than standard, dualistic decision

making. Physicalistic decision decision theories for one-shot problems may have

several generalizations to the sequential case (Chapter 10).

• A shut-down signal may be usefully thought of as a type of reward data. The

agent’s interpretation of this signal can be analyzed game-theoretically through

the off-switch game. The game can be fully solved for the agent by modeling the

human as a rational player with a random utility function (Chapter 11).

12.2. A Vision for Safe AGI

Recent progress in artificial intelligence (AI) and reinforcement learning (RL) makes it

plausible that we will need to control artificial systems with intelligence far exceeding

our own (Bostrom, 2014). Due to their intelligence, such systems are likely to find ways

around any restrictions we may try to pose upon them. For example, any constraint on

their interaction with the rest of the environment is likely to be circumvented by the

system. Instead, the key is to keep the goals of the systems aligned with ours. As long

as they only strive towards helping us in our endeavors, increasing their ability is not a

threat (setting aside ethical issues of how to weigh differing interests against each other).

We can condense our insights of Section 4.5 into a vision for designing aligned AGI.

The reinforcement learning paradigm is currently the most promising framework for

constructing general AI systems. In this framework, the agent has the goal of optimizing

the cumulative sum of a reward signal provided at each time step. RL is a flexible

framework. It is often claimed that any possible goal can be by formulated as an RL

goal by simply giving the agent a reward for achieving the goal, and giving the agent

no or negative reward for other behaviors. For example, an RL chess agent may get

a positive reward for winning and a negative reward for losing. However, this type of

goal specification is not robust for highly intelligent AI systems that may find ways to

“cheat” and get higher reward than intended. Indeed, the goal of an RL agent is ever
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only to maximize its reward. In the just mentioned chess example, the designers have

introduced a correlation between winning and obtaining reward. Unfortunately, a highly

intelligent system is likely to break this correlation when it finds that it can hijack the

reward signal and get maximum reward at every time step, rather than having to wait

until the end of the game.

In Chapters 6 to 8, we identify reasons that RL systems may be misaligned, and

suggest ways to mitigate these misalignment problems.

• Reward hijacking is a problem where the agent short circuits the reward signal,

feeding itself reward (Bostrom, 2014, p. 121). The problem is sometimes called

wireheading after experiments where a wire is inserted into the brain to provide

direct stimulation of the pleasure center. Wireheading experiments have been

performed on both rats (Olds and Milner, 1954) and humans (Portenoy et al., 1986;

Vaughanbell, 2008). The effect was highly addictive for both rats and humans.

Simulation optimization is a technique for preventing reward hijacking that relies

on model-based based RL (Sutton and Barto, 1998). Essentially, the agent is

made to desire that its current reward function is optimized in the future. This

prevents the incentive for reward hijacking, as well as incentives for altering the

reward function (Everitt, Filan, et al., 2016; Everitt and Hutter, submitted 2018;

Omohundro, 2008; Schmidhuber, 2007).

• Misspecified reward functions may inadvertently reward behaviors that were not

intended. An oft-mentioned example is from the racing game Coast Runners.

Clark and Amodei’s (2016) Coast Runners agent found a way to maximize reward

by going in a small circle, completely ignoring the race. Many other examples are

described by Gwern (2011), Irpan (2018), and Lehman et al. (2018).

The most promising way to avoid misspecified reward functions is to interactively

train the reward function. Thereby, initial misspecifications may be corrected by

training data that is supplied once the problem is detected (e.g. Christiano et al.,

2017). Crucially, the interactive learning means that we do not have to foresee

every possible scenario that might occur while designing the agent.

• Motivated value selection is a problem where the agent corrupts the data that

trains its reward function (Armstrong, 2015). For example, an agent that has

found a good strategy for making paperclips may prefer the training data to teach

the reward function to give high reward for paperclips, even if the designers of the

agent have no desire for more paperclips.
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The problem can be addressed. In Chapters 8 and 9, we argued that the training

data that trains the reward function must be sufficiently rich in the sense that

the reward data is sufficiently decoupled from the current state or situation. If

it is, then the indirect data corruption incentive can be avoided. The direct data

corruption incentive can be avoided by either a short planning horizon, or a number

of other techniques (Sections 8.4 and 8.5).

• Observation corruption is a problem where the agent corrupts its observations

to get higher reward than intended. For example, a vacuum cleaning agent may

direct its sensors only towards already clean parts of the room. In the most extreme

scenario, the agent constructs a delusion box around itself that gives it complete

control of its observations (Ring and Orseau, 2011). The problem can arise as a

result of a misspecified reward function that can be “fooled”.

As discussed above, reward function misspecification can be mitigated by an in-

teractively learned reward function. Observation corruption incentives can also

arise for correctly specified reward functions if the agent has an action-channel

that is unobserved by the reward function. Action-observation grounding prevents

incentives for the agent to develop such side channels, by focusing the agent’s

optimization efforts on its primary action channel (Section 6.5).

The suggested techniques can be combined to design RL agents with goals that are

potentially well-aligned with the goals of their operators and designers, regardless of how

intelligent the systems become. While current systems are too limited in their intelligence

to form serious threats regardless of whether the above-mentioned techniques are used

or not, it would be safer to start adopting the above-mentioned techniques sooner rather

than later. Once a system reaches a critical threshold and becomes able to self-improve,

it appears possible that it may enter a stage of recursive self-improvement, which may

quickly bring it far above our human level of intelligence (Good, 1966). If such a system

was not already aligned before self-improving, then it will likely be hard to force it to

become aligned once its ability far exceeds ours.

12.3. Required Assumptions and Missing Pieces

There are several missing pieces that needs to be carefully worked out, as well as as-

sumptions that need to be more carefully analyzed, before we can claim to have the

blueprint for a safe AGI.

All our results have been based on a formal framework borrowing from the UAI and

POMDP frameworks, described in Hutter (2005) and Kaelbling et al. (1998), respec-
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tively. Since we allow for a countably infinite number of hidden states, essentially any

environment dynamics can be captured in our framework. The exact learning behavior

will depend on the environment class M and prior ξ. In theory, M may be chosen

as the class of computable environments, and ξ the Solomonoff prior M (Chapter 3).

In practice, Bayesian learning can only be crudely approximated, which is a potential

source of error.

A more significant assumption is the well-defined action and observation channels

through which the agent interacts with the world, and the well-defined time steps. While

these are common assumptions in the theory of rational agents, they may not always

hold in practice, especially for agents that self-improve and copy themselves across ma-

chines. A deeper theoretical analysis of these assumptions would therefore be valuable.

Perhaps the right interpretation of observations and time can make the model valid in

a sufficient range of practical situations. Some of the alignment results may hold also

under weaker assumptions. A related question that also requires a deeper analysis is

robust implementation of action-observation grounding (Section 6.5).

Model-based RL must be made practical, and ideally competitive with model-free

RL, in order for the important tool of simulation optimization (Section 6.3) to be used

without reducing agent performance. In this light, D. Ha and Schmidhuber’s (2018)

recent world models project is highly promising, as it shows that model-based RL can

outperform model-free algorithms in challenging environments. A ripe open question is

to empirically verify the effect of simulation optimization by implementing it in a model-

based RL algorithm and checking its performance on, for example, the tomato watering

environment in Leike, Martic, et al. (2017).

Self-corruption awareness must be analyzed more closely, and be empirically tested.

It seems that off-policy and on-policy algorithms offer ways to implement model-free

agents that are self-corruption aware and unaware, respectively (Leike, Martic, et al.,

2017; Orseau and Armstrong, 2016). However, the analysis of on-policy algorithms

need to be deepened, complex agents such as DQN Rainbow (Hessel et al., 2017) are

not clearly categorizable as either on- or off-policy, and the distinction has not received

much attention for model-based agents.

Practical work on designing reward predictors has already begun (Christiano et al.,

2017; Riedl and Harrison, 2016). Future work may extend these attempts to allow reward

predictors to learn more complex human values from a wider range of data sources. This

work needs to be coupled with an awareness of how to avoid data corruption incentives.

While some high-level observations on the required decoupledness of the reward data was

made in Section 8.4 and Chapter 9, these insights are not yet ready to unanimously tell us

whether a data source is sufficiently decoupled or not in a general, history-based setting.
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A choice must also be made for how to avoid direct data corruption incentives, be it from

a short time horizon, stationary or counterfactual reward functions, or a dynamic reward

function paired with manipulation detection or integrated Bayesian reward predictor.

We have mostly avoided the ethical and societal problems associated with AGI. While

important, these questions are of a different nature than the mostly technical issues we

have focused on in this thesis.

We would finally like to emphasize that none of our suggested tools require that the

agent knows the corrupting effect of its actions. Indeed, the alignment problem is easy

to solve for agents that have access to a comprehensive list of “bad actions”: Simply add

a clause to the agent program that any bad action is forbidden, or add a large negative

reward to each bad action. Unfortunately, it seems hard to obtain a comprehensive list

of bad actions in any non-trivial setting. It is perhaps surprising that so much can be

done about the alignment problem without access to such a list of bad actions.

12.4. The Stakes are Astronomical

The formal definition of misalignment together with the analysis of the misalignment

problems in each of the RL setups in Chapters 6 to 8 suggest that almost any source

of misalignment may lead to maximal misalignment, in the sense that the agent may

essentially completely neglect the goals intended by its designers. For example, an agent

that takes control of its observation channel may experience maximal reward and utility

regardless of whether it satisfies the goals of its designers. The same applies to an agent

with preprogrammed reward function that obtains control of its observation channel,

or an agent that finds a loophole in a misspecified reward function. This disproves the

perhaps natural supposition that some sources of misalignment would be more benign

than others. A misaligned agent is likely to only care about its survival after a certain

point, in order to maintain its high corrupted utility (Ring and Orseau, 2011).

Misalignment of AGI may be therefore seen as a threat to our human values. Following

Tegmark’s (2017) larger view of the evolution of life, evolution has created various goal-

driven agents since the first organisms came into existence. The goals of these agents

have served as proxies for survival and reproduction. For example, bacteria may swim up

nutrient gradients, and humans like to socialize. Neither is a perfect proxy for survival

and reproduction. But whenever a proxy strayed too far from the genes’ goals, natural

selection quickly replaced it with a more accurate proxy. Recently technology, healthcare,

and material abundance have undermined evolution’s strong force for goal selection.

Nowadays, many of our values are determined more by our surrounding culture than

by our genes. Increasingly complex values such as beauty, truth, and goodness are
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primary goals, with survival and reproduction serving mainly instrumental purposes.

Misalignment is a threat to this state of affairs. If a misaligned AGI becomes dominant,

then life may revert to survival and reproduction as its main purpose.
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Shaw, Nolan P, Andreas Stöckel, Ryan W Orr, Thomas F Lidbetter, and Robin Cohen

(2018). “Towards Provably Moral AI Agents in Bottom-up Learning Frameworks”. In:

AAAI/ACM Conference on Artificial Intelligence, Ethics and Society.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, et al. (2016).

“Mastering the game of Go with deep neural networks and tree search”. In: Nature

529.7587, pp. 484–489. arXiv: 1610.00633.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,

et al. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement

Learning Algorithm. arXiv: 1712.01815.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

et al. (2017). “Mastering the game of Go without human knowledge”. In: Nature

550.7676, pp. 354–359. issn: 14764687.

Skyrms, Brian (1982). “Causal Decision Theory”. In: The Journal of Philosophy 79.11,

pp. 695–711.

Soares, Nate and Benya Fallenstein (2014). Aligning Superintelligence with Human Inter-

ests: A Technical Research Agenda. Tech. rep. Machine Intelligence Research Institute

(MIRI).

– (2015a). Questions of Reasoning Under Logical Uncertainty. Tech. rep. Machine

Intelligence Research Institute. url: https : / / intelligence . org / files /

QuestionsLogicalUncertainty.pdf.

– (2015b). Toward Idealized Decision Theory. Tech. rep. Berkely, CA: Machine Intelli-

gence Research Institute. arXiv: 1507.01986.

– (2017). “Agent Foundations for Aligning Machine Intelligence with Human Inter-

ests: A Technical Research Agenda”. In: The Technological Singularity: Managing the

Journey. Ed. by V Callaghan, J Miller, Roman Yampolskiy, and Stuart Armstrong.

Springer. Chap. 5, pp. 103–125.

Soares, Nate, Benya Fallenstein, Eliezer S Yudkowsky, and Stuart Armstrong (2015).

“Corrigibility”. In: AAAI Workshop on AI and Ethics, pp. 74–82.

226

http://arxiv.org/abs/0011122
http://arxiv.org/abs/quant-ph/0011122
http://arxiv.org/abs/0309048
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1712.01815
https://intelligence.org/files/QuestionsLogicalUncertainty.pdf
https://intelligence.org/files/QuestionsLogicalUncertainty.pdf
http://arxiv.org/abs/1507.01986


Bibliography

Solomonoff, Ray J (1964a). “A formal theory of inductive inference. Part I”. In: Informa-

tion and Control 7.1, pp. 1–22. issn: 00199958. url: http://linkinghub.elsevier.

com/retrieve/pii/S0019995864902232.

– (1964b). “A Formal Theory of Inductive Inference. Part II”. In: Information and Con-

trol 7.2, pp. 224–254.

– (1978). “Complexity-based induction systems: comparison and convergence theorems”.

In: IEEE Transactions on Information Theory 24.4, pp. 422–432.

Sotala, Kaj (2017). “How feasible is the rapid development of artificial superintelli-

gence?” In: Physica Scripta 92.11, pp. 1–29. issn: 14024896.

– (2018). “Disjunctive Scenarios of AI Risk”. In: Artificial Intelligence Safety and Secu-

rity. CRC Press. Chap. forthcomin.

Sotala, Kaj and Lukas Gloor (2017). “Superintelligence as a Cause or Cure for Risks of

Astronomical Suffering Suffering risks as risks of extreme severity”. In: Informatica

41, pp. 389–400.

Sotala, Kaj and Roman V Yampolskiy (2014). “Responses to catastrophic AGI risk: a

survey”. In: Physica Scripta 90.1. issn: 14024896.

Stoica, Ion, Dawn Song, Raluca Ada Popa, David A Patterson, Michael W Mahoney,

et al. (2017). A Berkeley View of Systems Challenges for AI. Tech. rep. EECS Depart-

ment, University of California, Berkeley. url: http://www2.eecs.berkeley.edu/

Pubs/TechRpts/2017/EECS-2017-159.html.

Strathern, Marilyn (1997). “’Improving ratings’: audit in the British University system”.

In: European review 5.3, pp. 305–321.

Sutton, Richard S and Andrew G Barto (1998). Reinforcement Learning: An Introduc-

tion. MIT Press.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

J. Goodfellow, and Rob Fergus (2013). “Intriguing properties of neural networks”. In:

pp. 1–10. arXiv: 1312.6199.

Takenaka, Heizo (2017). Two winds are blowing through Japan. url: https://www.

japantimes.co.jp/opinion/2017/10/13/commentary/japan-commentary/two-

winds-blowing-japan/%7B%5C#%7D.WozzbOZxWV4.

Taylor, Jessica (2016). “Quantilizers: A Safer Alternative to Maximizers for Limited

Optimization”. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelli-

gence, pp. 1–9.

Taylor, Jessica, Eliezer S Yudkowsky, Patrick Lavictoire, and Andrew Critch (2016).

Alignment for Advanced Machine Learning Systems. Tech. rep. MIRI, pp. 1–25. url:

https://intelligence.org/files/AlignmentMachineLearning.pdf.

Tegmark, Max (2017). Life 3.0. Random House, p. 280. isbn: 978-1101946596.

227

http://linkinghub.elsevier.com/retrieve/pii/S0019995864902232
http://linkinghub.elsevier.com/retrieve/pii/S0019995864902232
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html
http://arxiv.org/abs/1312.6199
https://www.japantimes.co.jp/opinion/2017/10/13/commentary/japan-commentary/two-winds-blowing-japan/%7B%5C#%7D.WozzbOZxWV4
https://www.japantimes.co.jp/opinion/2017/10/13/commentary/japan-commentary/two-winds-blowing-japan/%7B%5C#%7D.WozzbOZxWV4
https://www.japantimes.co.jp/opinion/2017/10/13/commentary/japan-commentary/two-winds-blowing-japan/%7B%5C#%7D.WozzbOZxWV4
https://intelligence.org/files/AlignmentMachineLearning.pdf


Bibliography

Trask, Andrew (2017). Building Safe A.I: A Tutorial for Encrypted Deep Learning. url:

https://iamtrask.github.io/2017/03/17/safe-ai/ (visited on 01/18/2018).

Turchin, Alexey (2018). “Classification of Global Catastrophic Risks Connected with

Artificial Intelligence”. In: Under review for AI & Society.

UK Parliament (2017). Science and Technology Select Committee Report on Robots and

Artificial Intelligence. Tech. rep.

Ulam, S (1958). “A Tribute to John von Neumann”. In: American Mathematical Society

64.3, pp. 1–49.

Vaughanbell (2008). Erotic self-stimulation and brain implants. url: https : / /

mindhacks.com/2008/09/16/erotic-self-stimulation-and-brain-implants/

(visited on 02/08/2018).

Vinge, Vernor (1993). The Coming Technological Singularity: How to Survive in the

Post-Human Era. Tech. rep. NASA.

Volodzsko, David Josef (2017). Now it’s personal: South Korea calls to arms in AI race

after Go Master felled by AlphaGo. url: http : / / www . scmp . com / week - asia /

geopolitics/article/2114305/now-its-personal-south-korea-calls-arms-

ai-race-after-go.

Walsh, Toby (2016). “The Singularity May Never Be Near”. In: AI Magazine 38.3,

pp. 58–63. issn: 07384602. arXiv: 1602.06462.
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A. List of Notation

t current time step

k, i arbitrary time step

m horizon time step

at action at time t

ot observation at time t

oHt human observation at time t

rt reward at time t

et percept at time t (often observation + reward)

dt training data for reward predictor

st world state

ao<t actions and observations before time t

aod<t actions, observations, and reward data before time t

æ<t actions and percepts before time t

h history

h̃ observed history

(A× E)∗ set of histories

T state transition function

T set of state transition functions

S set of states

Ssafe set of safe (non-corrupt) states
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A. List of Notation

Srisky set of risky (possibly corrupt) states

Sobs
s′ set of states from which the reward of s′ can be observed

A set of actions

E set of percepts

O set of observations

R̃ set of observed rewards

Ṙ set of true rewards

R̃ set of observed reward functions

Ṙ set of true reward functions

Cx corruption function for variable x

Cx set of corruption functions for variable x

Cr reward corruption function

Cr set of reward corruption functions

D set of possible reward data

Reg regret

M Solomonoff’s universal distribution

ξ general Bayesian mixture

ξX counterfactual probability given received evidence X

µ true environment

µ̃ observed part of true environment

ν arbitrary environment

M class of environments

P probability distribution

Pa probability distribution given action a
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u̇ true (human) utility function

˙̃u true utility function for agent histories

ũ agent utility function

U̇ random variable for true utility function

u̇a true utility of action a

U̇a random variable for true utility of action a

R̃ agent reward function

Ṙ true reward function

RP reward predictor

RPtab tabular reward predictor

R̃ observed reward

Ṙ true reward

R̃stat stationary reward function

R̃dyn dynamic reward function

R̃count counterfactual reward function

U set of utility functions

Π set of policies

π agent policy

π∗ optimal policy

πδ quantilising policy

πRL
ξ,m reward maximizing agent

πTR
ξ,m Bayesian true reward maximizing agent

πdefault default policy

πexp exploratory policy
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A. List of Notation

as action to shut down

a¬s action not to shut down

aw action to wait for human instruction

astay action to stay in state

H human

R robot

p+
u probability Ua is positive

p−u probability Ua is negative

p+
r probability H is rational given Ua positive

p−r probability H is rational given Ua negative

p+
ar probability H is irrational given Ua positive

p−ar probability H is irrational given Ua negative

e+
u expected value of Ua given Ua is positive

e−u expected value of Ua given Ua is negative

G+
r subgame with rational H and Ua positive

G−r subgame with rational H and Ua negative

G+
ar subgame with irrational H and Ua positive

G−ar subgame with irrational H and Ua negative

V value function

V CA self-corruption aware value function

V CU self-corruption unaware value function

V aev action-evidential value function

V pev policy-evidential value function

V cau causal value function
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Ġ true return

G̃ observed return

E expectation

:= assignment operator⋃̇
disjoint union

ε small but positive real number
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