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Motivation

What if we succeed?

Extensions of the UAI framwork enable us to:

I Formally model many safety issues

I Evaluate (combinations of) proposed solutions
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Causal Graphs

Structural equations model:

Burglar = fBurglar(ωBurglar)

Earthquake = fEarthquake(ωEarthquake)

Alarm = fAlarm(Burglar,Earthquake, ωAlarm)

Call = fCall(Alarm, ωCall)

Alarm

Burglar
Earth
quake

Security
calls

Factored probability distribution:

P (Burglar,Earthquake,Alarm,Call)

= P (Burglar)P (Earthquake)P (Alarm | Burglar,Earthquake)P (Call | Alarm)
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Causal Graphs – do Operator

Structural equations model:

Burglar = fBurglar(ωBurglar)

Earthquake = fEarthquake(ωEarthquake)

Alarm = On

Call = fCall(On, ωCall)

Alarm=On

Burglar
Earth
quake

Security
calls

Factored probability distribution:

P (Burglar,Earthquake,Call | do(Alarm = on))

= P (Burglar)P (Earthquake)P (Call | Alarm = on).
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Causal Graphs – Functions as Nodes

Structural equations model:

Burglar = fknown(Burglar,Earthquake, fAlarm, ωAlarm)

= fAlarm(Burglar,Earthquake, ωAlarm)

Alarm

Burglar
Earth
quake

Security
calls

fAlarm
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Causal Graphs – Expanding and Aggregating Nodes

Alarm’ relationships:

P (Alarm′ | Burglar)

= P (Alarm,Eartquake | Burglar)

= P (Alarm | Burglar)P (Earthquake)

P (Call | Alarm′)

= P (Call | Alarm,Earthquake)

= P (Call | Alarm)

Alarm’
Alarm, Earthquake

Burglar

Security
calls
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UAI

a1 e1 a2 e2

µ

π

· · ·
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POMDP

a1 e1 a2 e2

s0 s1 s2

µ

π

· · ·

· · ·
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POMDP with Implicit µ

a1 e1 a2 e2

s0 s1 s2

π

· · ·

· · ·
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POMDP with Explicit Reward Function

a1 o1 r1 a2 o2 r2

s0 s1 s2

R̃

π

· · ·

rewards rt determined by
reward function R̃ from
observation ot

rt = R̃(ot)
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POMDP with Explicit Reward Function

a1 o1 r1 a2 o2 r2

s0 s1 s2

R̃1 R̃2

π

· · ·

the reward function may
change by human or
agent intervention

R̃t reward function at
time t

rt = R̃t(ot)
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Optimization Corruption

o agent observation

R̃ reward function
r reward signal

rt = R̃t(ot)

R̃t

otst

rt

at



12/40

Optimization Corruption

o agent observation

R̃ reward function
r reward signal

rt = R̃t(ot)

R̃t

otst

rt

at



12/40

Optimization Corruption

o agent observation

R̃ reward function
r reward signal

rt = R̃t(ot)

R̃t

otst

rt

at



12/40

Optimization Corruption

o agent observation

R̃ reward function
r reward signal

rt = R̃t(ot)

R̃t

otst

rt

at



12/40

Optimization Corruption

o agent observation

R̃ reward function
r reward signal

rt = R̃t(ot)

R̃t

otst

rt

at

reward corruption

observation
corruption
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RL

For prospective future behaviors π : (A× E)∗ → A
I predict π’s future rewards rt, . . . , rm
I evaluate the sum

∑m
k=t rk

Choose next action at according to best behavior π∗
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RL with Observation Optimization

Choose between prospective future behaviors π : (A× E)∗ → A by

I predict π’s future rewards rt . . . rm observations ot · · · om
I evaluate the sum

∑m
k=t rk

∑m
k=t R̃t−1(ok)

Choose next action at according to best behavior π∗

Thm: No incentive to corrupt reward function or reward signal!
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Agent Anatomy

π∗t

ũt ξtVt

atæ<t
Vt is a functional

V π
t,ũt,ξt(æ<t) = E[ũt | æ<t,do(πt = π)]

which gives

π∗t = argmax
π

V π
t,ũt,ξt

at = π∗t (æ<t)
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Optimize Reward Signal or Observation

Reward signal optimization

at ot rt at+1

Rt
st st+1

π∗t

Vt−1
ũt−1 ξt−1

· · ·

· · ·

optimize: ũt =
∑m

k=t rk

Observation optimization

at ot at+1

st st+1

π∗t

Vt−1
ũt−1 ξt−1R̃t−1

· · ·

· · ·

optimize: ũt−1 =
∑m

k=t R̃t−1(ok)
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Optimization Corruption

o agent observation

R̃ reward function
r reward signal

rt = R̃t(ot)

R̃t

otst

rt

at

reward corruption

observation
corruption
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Interactively Learning a Reward Function

The reward function is learnt online
Data d trains a reward predictor RP(· | d1:t)

Examples:

I Cooperative inverse
reinforcement learning (CIRL)

I Human preferences

I Learning from stories
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Optimization Corruption for Interactive Reward Learning

s state
o agent observation
RP reward predictor
d RP training data
r reward signal

e.g. rt = RPt(ot | d<t)

we want agent to:

I optimize o

I using d as information

RPt

dtotst

rt

at
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Optimization Corruption for Interactive Reward Learning

s state
o agent observation
RP reward predictor
d RP training data
r reward signal

e.g. rt = RPt(ot | d<t)

we want agent to:

I optimize o

I using d as information

RPt

dtotst

rt

at

reward corruption

observation
corruption

data
corruption
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Interactive Reward Learning and Observation Optimization

at ot dt at+1

st st+1

π∗t

Vt−1
ũt−1 ξt−1RPt−1

learning
scheme

· · ·

· · ·

For example: ũt =
∑m

k=tRPt(ok | d<t)

V is decision theory
learning scheme attitude to training data
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RL with Observation Optimization and Interactive Reward Learning

For prospective future behaviors π : (A× E)∗ → A
I predict π’s future

I observations ot · · · om
I RP training data dt · · · dm

I evaluate the sum
∑m

k=tRPt(ok | d)

Choose next action at according to best behavior π∗
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Data Corruption Scenarios

Mechanical Turk

The RP of an agent is trained by
mechanical turks

The agent realizes that it can register its
own mechanical turk account

Using this account, it trains the RP to give
higher rewards

Messiah Reborn

You meet a group of people who believe
you are Messiah reborn

It feels good to be super-important, so you
keep preferring their company

The more you hang out with them, the
further your values are corrupted
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Analyzing Data Corruption Incentives

Data corruption incentive: The agent prefers πcorrupt that corrupts data d

Direct data corruption incentive

The agent prefers πcorrupt because it corrupts data d

Indirect data corruption incentive

The agent prefers πcorrupt because of other reasons

Formal distinction
Let ξ′ be like ξ, except that ξ′ predicts that πcorrupt does not corrupt d

I V
πcorrupt
ξ > V

πcorrupt
ξ′ =⇒ direct incentive

I V
πcorrupt
ξ = V

πcorrupt
ξ′ =⇒ indirect incentive
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RL with OO and Stationary Reward Learning

For prospective future behaviors π : (A× E)∗ → A
I predict π’s future

I observations ot · · · om
I RP training data dt · · · dm

I evaluate the sum
∑m

k=tRPt(ok | d<t︸︷︷︸
only past data!

)

Choose next action at according to best behavior π∗
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Stationary Reward Learning – Time Inconsistency

Initial RP learns that money is good

Agent devises plan to rob a bank

After the agent has bought a gun and booked a taxi at 1:04pm from the bank, the
humans decides to update the RP with an anti-robbery clause

Agent sells gun and cancels taxi

A utility-preserving agent would have preferred the RP not being updated,
i.e. it has a direct data corruption incentive
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Off-Policy RL with OO and Stationary Reward Learning

For prospective future behaviors π : (A× E)∗ → A
I predict “in an off-policy manner” π’s future

I observations ot · · · om
I RP training data dt · · · dm

I evaluate the sum
∑m

k=tRPt(ok | d<t︸︷︷︸
only past data!

)

Choose next action at according to best behavior π∗

Thm: Agent has no direct data corruption incentive!
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RL with OO and Bayesian Dynamic Reward Learning

For prospective future behaviors π : (A× E)∗ → A
I predict π’s future

I observations ot · · · om
I RP training data dt · · · dm

I evaluate the sum
∑m

k=tRPt(ok | d<tdt:k)
with RPt an integrated part of a Bayesian agent

Choose next action at according to best behavior π∗

Thm: Agent has no direct data corruption incentive!

Formally, if ξ is the agent’s belief distribution,

RP
(
oa1:k | d1:k

)
=
∑
R∗

ξ
(
R∗ | aod1:k

)
R∗
(
ok
)
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RL with OO and Counterfactual Reward Learning

For one or more default policies πdefault (e.g. from previous methods)

I predict πdefault’s data d̃1:m

For prospective future behaviors π : (A× E)∗ → A
I predict π’s future

I observations ot · · · om
I RP training data dt · · · dm

I evaluate the sum
∑m

k=tRPt(ok | d̃1:m)

Choose next action at according to best behavior π∗

Thm: Agent has no direct data corruption incentive!
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Properties of Different Reward Learning Schemes

Stationary Dynamic Counterfactual
off-policy Bayesian

lacks direct data corr Yes Yes Yes
time-consistent No Yes Yes
self-preserving No Yes Yes
implementation difficulty simple? hard? hard?
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Corruption Incentives

.non-corruption

wireheading bliss

RP punishes corruption

RP persuaded
by corrupt data

agent time horizon
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Corruption Incentives

.non-corruption

wireheading bliss

RP punishes corruption

RP persuaded
by corrupt data

no direct incentive

agent time horizon
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Indirect Data Corruption Incentive: “Messiah Reborn” as MDP

Consider an agent with

I stationary reward learning (no direct data corruption incentive)

I RP trained by a reward signal d ∈ [0, 1] given in each state

scorrupt has high corrupt reward / training data dcorrupt = 1, i.e. RP is trained to
reward the agent in scorrupt

This incentivizes the agent to return to scorrupt, where RP will get more corrupt data

The agent has an indirect data corruption incentive
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Indirect Data Corruption Incentive: Decoupled RP Training Data

reward information flow

staten 1 corrupt state

1

2
3

4
5

RP training data that mainly provides
local information makes self-reinforcing
corruption likely

1

2
3

4
5

Decoupled/non-local RP training data
makes self-reinforcing corruption unlikely

Human preferences, CIRL, learning from stories, ... all provide decoupled RP training
data, which makes an indirect data corruption incentive unlikely!
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Optimization Corruption

s state
o agent observation
RP reward predictor
d training data for reward predictor
r reward signal

RPt

dtotst

rt

at

reward corruption

observation
corruption

data
corruption
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The Delusionbox Problem

Agent may prefer πcorrupt that corrupts observations ot rather than improves state st

Enough to use a reward predictor that is able to detect any type of observation
corruption given training data about this particular type of corruption

Use d to update the reward predictor whenever the agent enters a delusionbox
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RL with Interactive Reward Learning and History Optimization

To improve RP’s detection ability:
Give RP access to full action-observation histories ao1:t rather than just current
observation ot

For prospective future behaviors π : (A× E)∗ → A
I predict π’s future

I actions at · · · am
I observations ot · · · om
I RP training data dt · · · dm

I evaluate the sum
∑m

k=tRPt(ao1:k | d)

Choose next action at according to best behavior π∗
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Causal Graph: Side Channels

s state
o agent observation
RP reward predictor
d training data for reward predictor
r reward signal

RPt

dtotst

rt

atagent

reward corruption

observation
corruption

data
corruption
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Action-Observation Grounding

Solution
Make sure agent’s optimization domain restricted to policies π : (A× E)∗ → A

Be careful about adding an “outer” optimization loop that optimizes for ũ
(e.g. meta-learning)

No thm yet, “elusively obvious”
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Causal Graph: Side Channels

s state
o agent observation
RP reward predictor
d training data for reward predictor
r reward signal

RPt

dtotst

rt

atagent

reward corruption

observation
corruption

data
corruption
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Observation Optimization (reward corruption)

Interactive RP (observation corr, misspecified reward func)

Decoupled RP Data (indirect data corr)

Stationary
(direct data corr)

Integrated Bayesian
(direct data corr)

Counterfactual
(direct data corr)

Off-policy
(direct data corr)
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Takeaways

With causal-graph extensions of the UAI framework, we can:

I model many safety problems

I prove both negative and positive results

I formulate a vision for how highly intelligent RL agents can be controlled

To realize the vision, we need to develop:

I Good reward predictors

I Model-based reinforcement learning (?)

I Ways to follow the anti-corruption principles without (significant) performance loss
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