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Abstract

Title: Universal Artificial Intelligence: Practical Agents and
Fundamental Challenges
Abstract: Foundational theories have contributed greatly to the
scientific progress in many fields. Examples include ZFC in
mathematics and universal Turing machines in computer science.
Universal Artificial Intelligence (UAI) is an increasingly well-studied
foundational theory for artificial intelligence. It is based on ancient
principles in the philosophy of science and modern developments in
information and probability theory.
The main focus of this tutorial will be on an accessible explanation of
the UAI theory and AIXI, and on discussing three approaches to
approximating it effectively. UAI also enables us to reason precisely
about the behaviour of yet-to-be-built future AIs, and gives us a
deeper appreciation of some fundamental problems in creating
intelligence.
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Blocks

Block 1: UAI Basics
2pm – 2:45pm

Block 2: Hands-on Examples

3pm – 4:30pm (coffee break in the middle)

Block 3: AI Safety
4:45pm – 5:45pm
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Foundational Theories

Mathematics: ZF(C), first-order logic

Computer science: Turing machines, λ-calculus

Physics: Quantum mechanics, relativity theory

Chemistry: Quantum electrodynamics

Biology: Evolution

Social sciences: Decision theory, game theory
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Theories of Intelligence

Cognitive psychology

Behaviourism

Philosophy of mind

Neuroscience

Linguistics

Anthropology

Machine Learning

Logic

Computer science

Biological evolution

Economics

Thinking Acting
humanly Cognitive Turing test,

science behaviourism
rationally Laws of AI: Doing the

thought right thing
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Approaches to AI

Deduction centered Induction centered

Main technique Logic/symbolic reasoning Prob. theory, ML

Agent goal Logical specification Reward (RL)

Noise/uncertainty Brittle Robust

Grounding Problem In reward

Foundational theory
Right thing to do

No UAI

Example
Medical expert systems,
chess playing agents

Example
AlphaGo, DQN,
self-driving cars
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What is the right thing to do?
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Universal Artificial Intelligence (UAI)

A foundational theory of AI

UAI

Framework

Learning Goal Planning

Answers: What is the right thing to do?
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Framework

x

Agent Environmentat

et

At each time step t, the agent

submits action at

receives percept et

History æ<t = a1e1a2e2 . . . at−1et−1

Set of histories: (A× E)∗
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Examples

Vacuum cleaner world

E = {dirt, no dirt}
A = {suck,move left,move right}

Stock trading

E = R+ (price of stock)
A = {buy, sell}
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Agent and Environment

Agent
Policy
π : (A× E)∗ → A
Next action
at = π(æ<t)

Environment
Distribution
µ : (A×E)∗×A E
Probability of next
percept:
µ(et | æ<tat)

e2

a2

e2

e1

e2

a2

e2

e′1

a1 = 0

e2

a2

e2

e1

e2 e2

a2

e′1

a1 = 1 a1 = π(ε)

e1 ∼ µ( · | a1)

a2 = π(a1e1)

e2 ∼ µ( · | a1e1a2)
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Markov Decision Process (MDP)

A

B

C

Da1

a2

a3

a4

a1

a1

a1

a2

a3

a4

Environment (s, a) 7→ (s′, r′)
Policy π : S → A
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Histories vs. States

History (UAI) State (MDP)

Percept e (s, r)

Hidden states Yes POMDP

Infinite no. states Yes Normally not

Non-stationary env. Yes Can be added

Agents/algorithms Policy Sequence of policies

Learning Harder MDP: Easy in principle
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How to learn?
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Induction

Learn

=⇒

Predict

=⇒

Plan

=⇒

Act

True environment µ unknown
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Principles

Occam (1285–1347)

Prefer the simplest consistent hypothesis

Epicurus (341–270 BC)

Keep all consistent hypotheses

Bayes (1701–1761)

Pr(Hyp | Data) =
Pr(Hyp) Pr(Data | Hyp)∑
Hi∈H Pr(Hi) Pr(Data | Hi)
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Remaining Questions

Hypothesis class H:
What environments µ can agent can possibly encounter?

Prior:
What is the prior probability Pr(µ) for each environment µ ∈ H?

Turing (1912–1954)

“It is possible to invent a single machine which can
be used to compute any computable sequence.”
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Solomonoff Induction

Use computer programs p as hypotheses/environments

Given Turing-complete programming language U , programs can

describe essentially any environment

be checked for consistency: is p(a<t) = e<t?

be used for prediction: compute p(a<tat)

be ranked by simplicity: Pr(p) = 2−`(p)

Solomonoff (1926–2009)

Make a weighted prediction based on all consistent
programs, with short programs weighted higher

Tom Everitt & John Aslanides (DeepMind) Universal Reinforcement Learning July 10, 2018 19 / 55



Solomonoff-Hutter’s Universal Distribution

M(e<t | a<t) =
∑

p : p(a<t)=e<t

2−`(p)

where

a<t action sequence

e<t percept sequence

p computer program

`(p) length of p

Predict with

M(et | æ<tat) =
M(e<tet | a<tat)
M(e<t | a<t)
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Solomonoff-Hutter’s Universal Distribution

M(e<t | a<t) =
∑

p : p(a<t)=e<t

2−`(p)

a<t action sequence

e<t percept sequence

p computer program

`(p) length of p

Occam: Simpler program higher weight

Epicurus: All consistent programs

Bayes: Discard inconsistent programs

Turing: Any computable environment

Predict with

M(et | æ<tat) =
M(e<tet | a<tat)
M(e<t | a<t)
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Examples

M(e<t | a<t) =
∑

p : p(a<t)=e<t

2−`(p)

M(010101010101 | 010101010101) = high
short program (low `(p)):

procedure MirrorEnvironment
while true do:

x← action input
output percept ← x

end while
end procedure

M(011001110110 | 000000000000) = low
program must encode 011001110110 (high `(p))
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Results Solomonoff Induction

Theorem (Prediction error)

For any computable environment µ and any actions a1:∞:

∞∑
t=1

Eµ
[
M(0 | æ<tat)− µ(0 | æ<tat)︸ ︷︷ ︸

prediction error at time t

]2 +
≤ 1

2
ln 2 ·K(µ)

Solomonoff induction only makes
finitely many prediction errors

The environment µ may be
deterministic or stochastic

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Agent can learn any computable environment
Tom Everitt & John Aslanides (DeepMind) Universal Reinforcement Learning July 10, 2018 22 / 55



What is the purpose?
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Goal = reward

What should be the goal of the agent?

Assumption

e = (o, r), where

o observation

r ∈ [0, 1] reward

The goal is to maximise return = “discounted sum of rewards”

∞∑
k=1

γkrk = γr1 + γ2r2 + γ3r3 + . . .
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Expected Performance

The expected return is called value:

V π
µ (æ<t) = Eπµ

[
∞∑
k=1

γkrk

∣∣∣∣∣ æ<t

]

e2

a2

e2

e1

e2

a2

e2

e′1

a1 = 0

e2

a2

e2

e1

e2 e2

a2

e′1

a1 = 1 V π
µ (ε) = V π

µ (a1) with a1 = π(ε)

V π
µ (a1) =

∑
e1

µ(e1 | a1)
[
r1 + γV π

µ (a1e1)
]

V π
µ (a1e1) = V π

µ (a1e1a2) with a2 = π(a1e1)

V π
µ (a1e1a2) =∑

e2
µ(e2 | a1e1a2)

[
r2 + γV π

µ (æ1:2)
]
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Expectimax Planning

The expected return is called value: V π
µ (æ<t) = Eπµ[R(æ1:∞) | æ<t]

∞∑
k=1

γkrk = r1 + γr2 + · · · γm−1rm︸ ︷︷ ︸
effective horizon

+ γmrm+1 + · · ·︸ ︷︷ ︸
<ε

≈
m∑
k=1

γkrk

e2

a2

e2

e1

e2

a2

e2

e′1

a1 = 0

e2

a2

e2

e1

e2 e2

a2

e′1

a1 = 1 Optimal policy:
π∗ = arg maxπ V

π
µ

An ε-optimal policy can be
found in any environment µ

a∗1 = arg max
a1

∑
e1

µ(e1 | a1) max
a2

∑
e2

µ(e2 | a1e1a2) . . .max
am

∑
em

µ(em | æ<mam)R(æ1:m)
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The right thing to do is. . .
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Expectimax in Unknown Environments: AIXI

AIXI replaces µ with M : πAIXI = arg max
π

V π
M

a∗1 = arg max
a1

∑
e1

M(e1 | a1) max
a2

∑
e2

M(e2 | a1e1a2) . . .max
am

∑
em

M(em | æ<mam)
∞∑

k=1

γkrk

Learn any
computable
environment

Acts
Bayes-optimally

One-equation
theory for Artificial
General Intelligence

Computation time:
exponential×infinite

e2

a2

e2

e1

e2

a2

e2

e′1

a1 = 0

e2

a2

e2

e1

e2 e2

a2

e′1

a1 = 1 a1 = πAIXI(ε)

e1 ∼M( · | a1)

a2 = πAIXI(a1e1)

e2 ∼M( · | a1e1a2)

Tom Everitt & John Aslanides (DeepMind) Universal Reinforcement Learning July 10, 2018 28 / 55



Benefits of a Foundational Theory of AI

AIXI/UAI provides

(High-level) blue-print or inspiration for design

Common terminology and goal formulation

Understand and predict behaviour of yet-to-be-built agents

Appreciation of fundamental challenges (e.g.
exploration/exploitation)

Definition/measure of intelligence
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How to approximate AIXI?
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Approximating AIXI

Approaches:

MC-AIXI-CTW:
Approximate Solomonoff induction and expectimax planning

Feature Reinforcement Learning:
Reduce histories to states

Model-Free:
Combine induction and planning
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MC-AIXI-CTW: Approximating Expectimax

Planning with expectimax search takes exponential time

Sample paths in expectimax tree (anytime algorithm)

e2

a2

e2

e1

e2

a2

e2

e′1

a1 = 0

e2

a2

e2

e1

e2 e2

a2

e′1

a1 = 1
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Monte Carlo Tree Search

e2

a2

e2

e1

e2

a2

e2

e′1

a1 = 0

e2

a2

e2

e1

e2 e2

a2

e′1

a1 = 1 a1 = arg max
a

V +(a)

P (e1 | a1)

a2 = arg max
a

V +(a1e1a)

P (e2 | a1e1a2)

upper confidence bound

V +(a) = V̂ (a)︸︷︷︸
average

+
√

log T/T (a)︸ ︷︷ ︸
exploration bonus

unexplored: high log T/T (a)
T (a) = times explored (a)

promising: high V̂ (a)

MCTS famous for good performance in Go (Gelly et al., 2006)
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Approximating Solomonoff Induction

Environments µ(et | æ<tat) allowed arbitrary long dependencies:
e1000 may depend on a1

Usually, most recent actions and percepts (=context) more relevant

a1 e1 a2 e2 . . . . . . . . . at−3et−3 et−2 at−1 et−1 at︸ ︷︷ ︸
context

et = 0

?

et = 1

?
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Learning from Contexts

The same context might have occurred before

. . . 00111 . . . 00110 . . . 00111 . . . 0︸︷︷︸
et−2

0︸︷︷︸
at−1

1︸︷︷︸
et−1

1︸︷︷︸
at

et = 0

?

et = 1

?

Similar experience can be used to predict
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Length of Contexts

Longer context =⇒ less data

. . . . . . 1000110 . . . . . . 1︸︷︷︸
at−3

0︸︷︷︸
at−2

0︸︷︷︸
et−2

0︸︷︷︸
at−1

1︸︷︷︸
et−1

1︸︷︷︸
at

et = 0

?

et = 1

?

Real-life example: I’m going to a Vietnamese restaurant tonight.
Should I predict food tastiness based on previous experiences with:

This restaurant (high precision, limited data)

Vietnamese restaurants (medium both)

Any restaurant (low precision, plenty of data)
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Contexts – Short or Long?

Short context More data Less precision
Long context Less data Greater precision

Best choice depends on

amount of data

the context itself

cup or cop?

from the

drink run

fill the
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Context Tree Weighting (CTW)

0 1 0 1

0

0 1

1 0

0 1

1

0 1

0 1

CTW “mixes” over all 22D context trees of depth ≤ D

CTW(e<t | a<t) =
∑

Γ

2−CL(Γ)Γ(e<t | a<t)

M(e<t | a<t) =
∑
p

2−`(p) [[ p(a<t) = e<t ]]

Computation time:

M(et | æ<tat) Infinite

CTW(et | æ<tat) Constant (linear in max depth D)
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MC-AIXI-CTW

Combining Context Tree Weighting and Monte Carlo Tree Search
gives MC-AIXI-CTW (Veness et al., 2011)

Learns to play

PacMan

TicTacToe

Kuhn Poker

Rock Paper Scissors

without knowing anything about the
games
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Other SI approximations

Looping Suffix Trees (Daswani et al., 2012a)

LSTM neural networks (Hochreiter et al., 1997)

Speed prior (Schmidhuber, 2002; Filan et al., 2016)

General compression techniques (Franz, AGI 2016)
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Feature Reinforcement Learning

Humans generally think in terms of what state they are in.

a1 e1 a2 e2 a3 e3 a4 e4 a5 e5 a6 e6 . . .

Φ reduces histories to states

s1 s2

s3

State representation often valid:

Games, toy problems: Φ(æ<t) = ot (state fully observable)

Classical physics: State = position + velocity.

General: Φ(æ<t) = æ<t (history is a state, but useless)
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a1 e1 a2 e2 a3 e3 a4 e4 a5 e5 a6 e6 . . .

Φ reduces histories to states

s1 s2

s3

Standard RL (MDP) applications: Designers give history 7→ state

Can be inferred automatically: ΦMDP approach (Hutter, 2009b)

Search for a map Φ : æ<t 7→ si minimising a cost criterion

Feature Reinforcement Learning alternative to POMDPs and PSRs
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ΦMDP: Computational Flow

Environment

�
�

�
�History æ<t

�
�

�
�State st=Φ(æ<t)

�
�

�
�Transition Pr. T̂

Reward est. R̂

�
�

�
�T̂ e, R̂e

�
�

�
�(Q̂) V̂alue

�
�

�
�Best Policy π̂

6
percept et−1

6
min Cost(Φ | æ<t)

�
�
��

frequency estimate

-exploration
bonus

@
@
@R

Bellman

?
implicit

?
action at
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ΦMDP Results

Theoretical guarantees:
Asymptotic consistency (Sunehag and Hutter, 2010)

How to find/approximate best Φ:

Exhaustive search for toy problems (Nguyen, 2013)

Approximate solution with Monte-Carlo
(Metropolis-Hastings/Simulated Annealing) (Nguyen et al., 2011)

Exact solution by CTM similar to CTW (Nguyen et al., 2012)

Experimental results:
Comparable to MC-AIXI-CTW (Nguyen et al., 2012)

Extensions:

Looping context trees for long-term memory (Daswani et al., 2012b)

Structured MDPs (Dynamic Bayesian Networks) (Hutter, 2009a)

Relax Markov property (Extreme State Aggregation) (Hutter, 2014)
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Model-free AIXI

Do both induction and planning simultaneously

V π(æ<tat) expected return from action at and policy π

V ∗(æ<tat) expected return from action at and optimal policy π∗

By learning V ∗, possible to always act optimally

at = arg max
a

V ∗(æ<t a)

How to learn V ∗ directly “Solomonoff-style” with compression is
explored by Hutter (2005, Ch. 7.2) and Veness et al. (2015)

Learns ATARI games (Pong, Bass, and Q*Bert) from watching screen
“DQN style”
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Fundamental Challenges
What is an optimal agent?

Maximum subjective reward?
Maximum objective reward asymptotically?

Exploration vs. exploitation (Orseau, 2010; Leike et al., 2016a)

Where should the reward come from?
Human designers
Knowledge-seeking agents (Orseau, 2014)

Utility agents (Hibbard, 2012)

Value learning agents (Dewey, 2011)

How should the future be discounted? (Lattimore and Hutter, 2014)

What is a practically feasible and general way of doing
induction?
planning?

What is a “natural” UTM/programming language? (Mueller, 2006)

How should agents reason about themselves? (Everitt et al., 2015)

How should agents reason about other agents reasoning about
itself? (Leike et al., 2016b)
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Notions of Optimality

Should I try the new restaurant in town?

Learn whether it’s good, but risk bad evening

AIXI/Bayes-optimal:

Try iff higher expected utility
Optimal with respect to subjective belief
Any decision optimal for some belief/UTM (Leike and Hutter, 2015)

Subjective form of optimality

Asymptotic optimality

Maximal possible reward eventually
Objective
Risky short-term
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Optimism

Paradise exists, I just need to find my way there

Standard RL: Positive initialisation

UAI: From a finite but growing set Nt of environments, always act
according to ν ∈ Nt that makes the highest reward possible

a∗t = arg max
at

max
ν∈Nt

Qν(æ<tat)

If there is a chance: Try it!

Optimistic agents

explore with focus

asymptotically optimal
(Sunehag and Hutter, 2015)

vulnerable to traps

x ?
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Thompson-sampling

Act according to a random environment ν ∈M re-sampled from
posterior every effective horizon m

ν ∼M(ν | æ<t) and at = arg max
a

Vν(æ<ta)

The more likely the restaurant is good, the higher chance try it soon.
Will be tried eventually.

Thompson-sampling agents are (strongly) asymptotically optimal
(Leike et al., 2016a)
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Conclusions

UAI is

Foundational theory of AI

What’s the right thing to do

a∗1 = arg max
a1

∑
e1

M(e1 | a1) max
a2

∑
e2

M(e2 | a1e1a2) . . .max
am

∑
em

M(em | æ<mam)R(æ1:m)

M(e<t | a<t) =
∑

p : p(a<t)=e<t

2−`(p) R(æ1:∞) = r1 + γr2 + γ2r3 + · · ·

Useful for

Inspiring practical agents

Predicting and controlling superintelligent agents

Identifying and addressing fundamental challenges
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