
Free Lunch for Optimisation under the Universal Distribution

Tom Everitt1, Tor Lattimore2, and Marcus Hutter3

1Stockholm University, Sweden. Email: everitt@math.su.se
2University of Alberta, Edmonton, Canada

3Australian National University, Canberra, Australia

Abstract

Function optimisation is a major challenge in com-
puter science. The No Free Lunch theorems state
that if all functions with the same histogram are
assumed to be equally probable then no algorithm
outperforms any other in expectation. We argue
against the uniform assumption and suggest a uni-
versal prior exists for which there is a free lunch, but
where no particular class of functions is favoured
over another. We also prove upper and lower bounds
on the size of the free lunch.

Keywords: No Free Lunch; Black-box Optimisa-
tion; Universal Distribution; Solomonoff induction;
Kolmogorov complexity

Published as: pp. 167–174, in Proceedings of 2014 IEEE Congress on Evolutionary Computation (CEC), July 6-11, 2014,
Beijing, China. DOI: 978-1-4799-1488-3/14/$31.00 c©2014 IEEE

1 Introduction

Finite black-box optimisation is the problem of find-
ing an optimal value (usually the maximum or mini-
mum) of a target function f : X → Y where X and
Y are finite. A wide range of tasks may be formu-
lated in this setting. For instance, drug-design may
be viewed as the task of finding a mix of chemicals
that maximises recovery chances. Since experimen-
tation is expensive it is crucial that the best drug
be found as soon as possible.

It is desirable to find optimisation algorithms
that perform well on a wide variety of target func-
tions, as this minimises the need for fine-tuning
the algorithm to the problem. Indeed, several such
algorithms exist and are regularly employed in prac-
tice; examples include hill-climbing and simulated
annealing, as well as genetic algorithms. However,
the theoretical understanding of the conditions per-
mitting such “universal” algorithms remains limited
[CO01, Str03, WR06, JC11]. To approach this prob-
lem, we derive bounds for expected optimisation-
performance under assumptions justified in all (or
virtually all) optimisation settings.

The original No Free Lunch (NFL) theorems state
that when the global performance of an optimisation
algorithm is measured by taking a uniform average
of its performance over all functions from X to Y ,
then no algorithm is better than random (assuming
no point is sampled more than once) [WM97]. The
uniform assumption is justified by assuming the
absence of prior knowledge and the results are often
used to claim that no optimisation algorithm can
be universal.

There is, however, another viewpoint. If we as-
sume that the function f : X → Y to be optimised
is generated by some (unknown) computer program,
then taking a uniform prior over programs is ar-
guably more natural. This is a reasonable assump-
tion based on the commonly held view that the
universe is likely to be (stochastically) computable
[Fre92, Wol02, Hut12]. The distribution on func-
tions induced by this approach is the famous univer-
sal lower-semicomputable semi-distribution1 devel-
oped by Solomonoff and others [LV08]. The univer-
sal distribution satisfies many nice properties, both
theoretical and philosophical. It is a natural choice
when formalising Occam’s razor in combination with
Epicurus’ principle of multiple explanations since
it favours simplicity over complexity without dis-
regarding the possibility that the truth is complex
[Hut05, RH11]. The universal distribution also ex-
hibits a range of other desirable properties, discussed
further in Section 3.

If performance is measured in expectation with re-
spect to the universal distribution, then the no free
lunch theorems can no longer be applied. Indeed, un-
der some highly technical conditions Streeter [Str03]
showed that there is a free lunch for optimisation
under Solomonoff’s universal distribution. Tightly
related to the universal distribution is Kolmogorov
complexity: Borenstein and Poli [BP06] discuss Kol-

1 The use of lower semicomputable semi-distributions
rather than regular computable distributions is technical only
and may be ignored by the reader unfamiliar with algorithmic
information theory.

mogorov complexity and optimisation, and also give
a good account of previous research in this area
(see also [McG06]). Several authors report on Kol-
mogorov complexity not being perfectly related to
searchability [SVW01, DJW02, BP06], but except
for [Str03], implications for search performance un-
der the universal distribution have not been investi-
gated. The relation between the universal distribu-
tion and the NFL theorems for supervised learning
has been studied by Lattimore and Hutter [LH11].
In sequence prediction and reinforcement learning,
the universal distribution has been extensively re-
searched [Hut05].

We first improve on [Str03] by presenting the
first easily interpretable theorem that there is a free
lunch if performance is measured in expectation
with respect to Solomonoff’s universal distribution
rather than the uniform distribution originally used
by Wolpert and Macready (Section 6). Unfortu-
nately the size of the free lunch turns out to be
somewhat limited. Under only weak assumptions
we show that no computable algorithm can perform
much better than random, even when performance
is averaged with respect to the universal distribution
(Section 7). This result is then extended to arbitrary
(possibly non-computable) optimisation algorithms
for a commonly used performance measure.

2 Preliminaries

A (finite binary) string is a finite sequence x =
b1b2 · · · bn with bi ∈ B = {0, 1} and length `(x) = n.
The set of all finite binary strings is denoted by
B∗. Strings may be concatenated in the obvious
way. Power notation is used to represent multiple
concatenations: for example, 0140 = 011110.

A problem context is a pair X,Y of finite subsets
of B∗, both containing at least 0 and 1 (to avoid
degenerate cases). In a problem context X,Y , the
search space is X and the range is Y . We let X
and Y be the sets of all search spaces and all ranges
respectively.

Definition 1. An optimisation problem is a collec-
tion P = {PXY }, where PXY is a measure over the
finite set Y X = { f : X → Y } of functions from X
to Y .

A search trace Tn on X,Y is an ordered n-tuple
〈(x1, y1), . . . , (xn, yn)〉 ∈ (X × Y)n, representing a
search history. The empty search trace will be de-
noted 〈〉. Let Tn(X,Y) be the set of all search

traces of length n, and let T (X,Y) :=
⋃|X|
i=0 Ti(X,Y)

be the set of traces of any length. Further, let
T :=

⋃
X,Y ∈X×Y T (X,Y) be the set of search traces

on any context. If Tn = 〈(x1, y1), . . . , (xn, yn)〉, then
T xn := 〈x1, . . . , xn〉 and T yn := 〈y1, . . . , yn〉.

An optimiser is a function a : X × Y × T → X
where a(X,Y, T) ∈ X − T x for all (X,Y, T). The
optimiser selects new, unvisited search points in
the search space based on previously seen data and
the problem context. That the optimiser is only
permitted to sample unvisited points is standard in
the literature, and non-restrictive in the noise-free
setting considered in this paper.

The setup is this: A problem context X,Y is
fixed, and a target function f : X → Y is sampled
from Y X according to the problem distribution PXY .
The optimiser is initialised with the empty search
trace and the problem context, and outputs a search
point x1 ∈ X by a(X,Y, 〈〉) = x1. The search trace
becomes 〈x1, f(x1)〉. The new search trace is fed to
the optimiser, which produces a new search point
x2 via a(X,Y, 〈(x1, f(x1))〉), and so on. Observe
that the search trace is a function of the optimiser,
the problem context and the sampled function f .
We write TXY (a, f) for the “full” trace of length
|X| that a generates on f and X,Y ; when X,Y is
clear from the context, T (a, f) will suffice. The Y -
components T yXY (a, f) will be called the result vec-
tor of a on f and X,Y . We will also use R to denote
result vectors. Let R(X,Y) be the set of all result
vectors on X,Y , and let R =

⋃
X,Y ∈X×Y R(X,Y).

The performance of an optimiser a on a problem
P is measured in terms of the result vectors it pro-
duces. A function M : X × Y ×R → [0,∞) defines
a performance measure by the P-expected value of
M for a on each problem context X,Y :

MP
XY (a) :=

∑
f∈Y X

PXY (f)MXY (T y(a, f)) (1)

We use JsK for the Iverson bracket that is 1 when
s is true, and 0 otherwise. For any list R, R[i]
extracts its ith element.

3 The universal distribution

We now give a short introduction to Kolmogorov
complexity and the universal distribution. Detailed
references are [LV08] and [Cal02].

Prefix codes are central elements in algorithmic
information theory. A prefix code is a set of code
words (formally, strings) where no code word is a
prefix of another. This makes prefix codes uniquely
decodable: in a sequence of appended code words it
is possible to tell where one code word ends another
begins. Kraft’s inequality gives a lower bound on
the length of the code words in a prefix code [LV08,
p. 76]. Definition 2 gives some commonly used prefix
encodings of strings, numbers, lists and functions.

2

Definition 2 (String encodings). Let x be a binary
string, n a natural number and Z = z1, . . . , zn a
list of strings. Then x̄ := 1`(x)0x, n̄ := 1n0 and
Z̄ := n̄z̄1 · · · z̄n defines prefix codes for x, n and Z.
The code for lists may be applied recursively to lists
of lists. Target functions f : X → Y are encoded
by lists f(x1), . . . , f(xn) where x1, . . . , xn are the
elements of X in order.

For technical reasons, regular Turing machines are
not suitable for defining the universal distribution,
so prefix machines are often used instead.

Definition 3 (Prefix Machines). A prefix machine
V is a Turing machine with one unidirectional in-
put tape, one unidirectional output tape, and some
bidirectional work tapes. Input tapes are read only,
output tapes are write only. All tapes are binary
and work tapes are initialised with zeros. We say
V halts with output x on input p given s and write
V (p|s) = x, if s̄p is to the left of the input head and
x is to the left of the output head when V halts.
For any s ∈ B∗, the inputs on which V (·|s) halts
form a prefix code. Also, just as for regular Turing
machines, there are universal prefix machines that
can simulate any other prefix machine.

Definition 4 (Prefix Complexity). Let x, y ∈ B∗
be finite binary strings and U a universal prefix
machine, then the Kolmogorov complexity of x con-
ditioned on y is the length of the shortest program
that given y outputs x.

KU (x|y) := min{ `(p) : U(p|y) = x } (2)

A simple but fundamental theorem is that KU de-
pends on U only up to constant factors, so from
now on, as is usual in algorithmic information the-
ory, we fix an arbitrary universal prefix machine
as a reference machine and simply write K(x) for
KU (x).

Definition 5 (Function complexity). Let f : X →
Y , then the complexity of f is K(f |X,Y), with f
and X,Y encoded by strings according to Defini-
tion 2.

The Martin-Löf–Chaitin Thesis states that ran-
domness may be defined as incompressibility
[GTW+11, p. 705]. A target function is incom-
pressible or random if K(f |X,Y) ≥ |X| log |Y |. A
classical result in algorithmic information theory
shows that almost all functions are (nearly) random.
Thus, the uniform distribution puts the majority
of its weight on random functions, which is one ex-
planation for why it is hard to optimise under the
uniform distribution. In contrast, the universal dis-
tribution puts more weight on “simple”, non-random
functions:

Definition 6 (Universal distribution). For each
context X,Y , the universal distribution is defined
as

mXY (f) := cmXY
· 2−K(f |X,Y), (3)

where cmXY
= 1/

∑
f : X→Y 2−K(f |X,Y) is just a nor-

malising constant. In the literature, unnormalised
versions of m are often considered. Although cmXY

may fluctuate with X,Y , there is a constant cm
depending only on the reference machine such that
1 ≤ cmXY

≤ cm for all X,Y . Note that m is an
optimisation problem, since mXY is a distribution
over Y X for each X,Y .

Somewhat surprisingly, there is an equivalent def-
inition of m as the distribution obtained by feeding
random coin-flips into a universal prefix machine
with access to X,Y .

mXY (f) ≈
∑
p∈B∗

2−`(p)JV (p|X,Y) = fK. (4)

The approximation holds up to irrelevant multiplica-
tive factors, so (4) is often used in place of (3) as
the definition of the universal distribution.2 Feed-
ing a universal prefix-machine random coin-flips is
a natural formalisation of the uniform prior over
computer programs advocated in the introduction.
Thus m may be justified as a subjective prior for
the assumption that the target function has been
computably generated.3

The bias away from randomness also aligns with
our intuition of how functions “ought to be opti-
mised”. If the first hundred observations are pre-
dicted by a simple polynomial, then common sense
(and Occam’s razor) suggests that the best pre-
diction of unseen points is that they follow the
polynomial. In general, the “simplest” structure
perceivable in the data should be the most likely
extrapolation. The universal distribution is consis-
tent with this intuition. A detailed discussion of
the philosophical justification for the universal prior
can be found in [RH11].

To summarise, we have argued for the universal
distribution on the following grounds:

• (Weak assumptions): If the target function is
generated by a computer program, then a uni-
form prior over computer programs is justified.
Formalised as in (4), this yields the universal
distribution.

2Even the definition given in (3) depends on the choice of
reference machine up to multiplicative factors.

3 There are also “objective” grounds to prefer m as a
prior, including regrouping invariance [Hut07] and domi-
nance [LV08]. Neither hold for the uniform distribution.

3

• (Downweighs randomness): A uniform prior
over target functions puts the (vast) majority of
the weight on (nearly) random functions. The
universal distribution concentrates on struc-
tured functions, without favouring any particu-
lar class of functions.

• (Aligns with Occam): Intuition and Occam’s
razor suggests that the best extrapolation is
the continuation of the “simplest” pattern ob-
servable in data, which corresponds well with
the relative probabilities of the universal distri-
bution.

Next we will present some background on the NFL
theorems and introduce our performance measure
Mot, before taking a closer look at optimisation
under m.

4 No Free Lunch

The NFL theorems provide important insights into
the possibility of universal optimisation. They show
that for certain distributions PXY all optimisers
perform identically with respect to some (or all)
performance measure(s). This is often phrased as
“there is no free lunch available for PXY ”. For ex-
ample, if NFL holds for a performance measure
depending on how many function evaluations are
required to find the maximum, then this implies
that in expectation a hill-climbing optimiser will
find the maximum as slowly as a hill-descending
optimiser.

Definition 7 (Performance measure-NFL). NFL
holds for a distribution PXY and a performance
measure M if MP

XY (a) = MP
XY (b) for all optimisers

a and b. If NFL holds for all performance measures
M , then NFL simply holds for PXY . If NFL does
not hold for PXY (and M), then we say that there
is free lunch for PXY (and M).

The stronger statement that NFL holds for all per-
formance measures may equivalently be defined in
terms of result vectors. The proof of the equivalence
is a straightforward application of the definitions.

Lemma 8 (Result vector-NFL). Let PXY a(R) be
the probability

∑
f∈Y X PXY (f)JT y(a, f) = RK that

an optimiser a generates the result vector R, then
NFL holds for PXY if and only if PXY a(R) =
PXY b(R) for every pair of optimisers a and b and
every result vector R ∈ Y |X|.

4.1 The NFL theorems

Igel and Toussaint [IT04] showed that the precise
condition for NFL is block uniformity of PXY .

Definition 9 (Block uniformity). A histogram for
a function f is a function hf : Y → N defined as
hf (y) = |f−1(y)|, indicating how many x’s map to
every y. The subset of all functions X → Y with
histogram h is called the base class of h, and is
denoted Bh. The distribution PXY is block uniform
if for every h it holds that f, g ∈ Bh =⇒ PXY (f) =
PXY (g).

Theorem 10 (Non-uniform NFL [IT04]). NFL
holds for PXY if and only if PXY is block uniform.

The original NFL theorem by Wolpert and
Macready [WM97] showed that NFL holds when
PXY is uniform on Y X . As uniform distributions
are a special case of block uniform distributions,
Wolpert and Macready’s result follows from Igel
and Toussaint’s.

Another special case is the NFL theorem for uni-
form optimisation problems over function classes
closed under permutation (c.u.p.) by Schumacher
et al. [SVW01]. A permutation is a bijective
function σ : X → X that permutes functions via
(σf)(x) = f(σ−1(x)). A class F ⊆ Y X is c.u.p.
if f ∈ F =⇒ σf ∈ F for all permutations σ.
The uniform distribution uF over F is defined by
uF (f) := 1/|F | if f ∈ F and 0 otherwise.

Theorem 11 (NFL for c.u.p. classes [SVW01]). If
PXY is the uniform distribution over a class F ⊆
Y X , then NFL holds for PXY if and only if F is
c.u.p.

A simple consequence of the NFL theorems is
that all optimisers produce the same result vectors.
We state this as a lemma for future reference.

Lemma 12 ([SVW01]). The set of result vectors
{R ∈ R(X,Y) : T y(a, f) = R for some f ∈ Y X }
ever produced by an optimiser a on X,Y is the same
for all optimisers.

The NFL theorems have also been investigated in
infinite and continuous domains. Depending on the
generalisation, free lunches may or may not emerge
in those settings [AT07, RVW09].

5 Performance measures

So far we have only considered problems for which
either NFL holds for all performance measures, or
for which a free lunch is available for some perfor-
mance measures. Often, however, we are interested
in performing well under a fixed performance mea-
sure of interest. One natural choice of performance
measure is optimisation time, which in this context

4

means the number of function evaluations required
to find the maximum.4

Definition 13. The optimisation time performance
measure Mot is defined as

Mot,XY (R) := min
i

(R[i] = maxY) ,

MP
ot,XY (a) :=

∑
f∈Y X

PXY (f)Mot,XY (T y(a, f))

for result vectors and optimisers, respectively. Un-
der Mot a low score is better than a high score.

A variety of performance measures have been
considered in the literature. Some use properties
of the k first function evaluations, for example
the number of values exceeding a certain thresh-
old [CO01, WR06, JC11], or the probability that
some seen value exceed the threshold [WM97]. Grif-
fiths and Orponnen [GO05] use a performance mea-
sure Mmax depending on the size of the greatest
value of the first k observations. Others, such as
[BP06, Jan13], use Mot. The main reason we prefer
Mot to the other alternatives is that it is better
suited for the asymptotic results we will aim for.

Results about particular performance measures
often have greater practical interest than their
arbitrary-measure counterparts. In addition, partic-
ular performance measures may also have theoretical
interest. Under particular performance measures,
NFL may hold for classes that are not c.u.p. [GO05].
This does not contradict Theorem 11, which only
claims that for every non-c.u.p. class, there is some
performance measure permitting a free lunch. In-
deed, it is unsurprising that NFL will apply to wider
ranges of function classes when a fixed performance
measure is used. The conditions for NFL under Grif-
fiths and Orponnen’s performance measure Mmax

turn out to be significantly more intricate compared
to the standard NFL case [GO05].

Another difference is found in the “cleverness”
required to exploit a free lunch. Optimisers that
choose the next point to probe irrespective of pre-
vious observations are called non-adaptive; such
optimisers can only exhibit a limited amount of
sophistication. Proposition 14 shows that when a
free lunch is available and arbitrary measures are
allowed, then there is free lunch for a non-adaptive
optimiser. In contrast, under particular measures
such as Mot and Mmax, adaptive optimisers may
differ in performance while all non-adaptive opti-
misers perform the same. In this sense, “smarter”

4 In black-box optimisation in general, and evolutionary
algorithms in particular, the evaluation of the target function
typically constitutes the main expense of computation time.
This is the motivation behind the name optimisation time
for the number of target function evaluations.

algorithms may be required for exploiting a free
lunch when using a particular performance measure,
compared to when arbitrary performance measures
are permitted.

Proposition 14. If NFL does not hold for a dis-
tribution PXY , then there is free lunch for a non-
adaptive optimiser under some performance mea-
sure.

Proof. Since NFL does not hold for PXY we have by
Theorem 10 that PXY is not block uniform. Hence
there are two functions f and σf in the same base
class Bh such that PXY (f) > PXY (σf), where σ is
a permutation on X. Let e and eσ be non-adaptive
optimisers, with e searching X = {x1, . . . , xn }
in order, and eσ searching X in the order of
σX = {σ(x1), . . . , σ(xn) }. Now e generates the
result vector Rf = 〈f(x1), . . . , f(xn)〉 exactly when
f is the true function, and eσ generates Rf exactly
when σf is the true function. An immediate conse-
quence is that PXY e(Rf) = PXY (f) > PXY (σf) =
PXY eσ(Rf). That is, the non-adaptive algorithms
e and eσ generate Rf with different probability,
which means that there is free lunch for some non-
adaptive optimiser under some performance measure
by Lemma 8.

In conclusion, specific performance measures can
be considered for both practical and theoretical rea-
sons. They are more practically relevant in the sense
that they measure aspects we care about in practice
(such as how long it takes to find a maximum). But
they also have theoretical interest, as they expose
aspects that are invisible from an arbitrary-measure
perspective.

6 Universal Free Lunch

We now turn to the question of whether or not a free
lunch is available under m, which we will answer
in the affirmative for both arbitrary performance
measures and Mot.

The universal distribution solves the induction
problem for sequence prediction [Hut05, RH11].
Black-box optimisation also include an induction
problem in the extrapolation of target-function be-
haviour from the points already evaluated. Al-
though successful inference of the target-function
behaviour may not be strictly necessary, it will typ-
ically enable better choices of future search points.

There are several important differences between
sequence prediction and optimisation. First, op-
timisation is an active setting: the choices of the
optimiser affect both the learning outcome and the
reward. This entails an exploration/exploitation

5

0 1 · · · k−1 k k+1 · · ·

1

0

f
g

Figure 1: The function f has complexity bounded by
a constant cf independent of X and Y . In contrast,
the complexity of g grows logarithmically with |X|.
See the proof of Theorem 15 for details.

tradeoff in the choice between potentially informa-
tive points and points likely to mean high perfor-
mance (e.g. points likely to be a maximum). Fur-
ther, optimisation is a finite setting, which yields less
time to exploit a good model (compared to sequence
prediction where infinite sequences are considered).
There are also major differences in the hypothesis
classes and in how performance is measured.

Section 7 presents a number of results bounding
the amount of free lunch under m. Perhaps surpris-
ingly, only a small amount of free lunch is available
under the universal distribution.

6.1 Free lunch under arbitrary per-
formance measures

Streeter [Str03] showed that there is free lunch for
m under certain technical conditions. We prove a
similar result, but with more interpretable condi-
tions (in terms of the size of X, only). We also use
a different proof than Streeter.

Theorem 15 (Universal free lunch). There is free
lunch for the problem m for all problem contexts
with sufficiently large search space (the required size
depending on the reference machine only).

Proof. It will be shown that mXY is not block uni-
form for problem contexts with sufficiently large X,
which by Theorem 10 implies that NFL does not
hold.

Pick a problem context X,Y . Consider two func-
tions f and g in the base class Bh ⊆ Y X of functions
with one value 1 and the rest of the values 0. Let f
be 1 at x1 and let g be 1 at some point xk chosen
so that K(g |X,Y) ≥ log2|X| − 1 (see Fig. 1). To
see that such a g exists, note that there are |X|
different functions in Bh. As the halting programs
for the reference machine constitute a prefix code,
there can be at most |X|/2 halting programs of
length ≤ log2|X| − 1 by Kraft’s inequality. Thus

at least one of the Bh-functions must have a short-
est program longer than log2|X| − 1, and therefore
complexity K(g |X,Y) ≥ log2|X| − 1. Meanwhile,
K(f |X,Y) ≤ cf for some constant cf independent
of the problem context. So for search spaces with
log2(|X|)−1 > cf , this means that f will have lower
complexity than g, and thus that mXY will assign
different probabilities to f and g. As f and g are
elements of the same base class, this shows that m
is not block uniform for search spaces greater than
2cf+1. By Theorem 10, this implies a free lunch for
m under some performance measure.

Indeed, m is not even close to block uniform for
large search spaces in the sense that the functions
of type f and g will receive substantially different
weights. However, this does not necessarily imply a
big free lunch, as we shall see in Section 7.

6.2 Free lunch under Mot

As has been discussed, in practice we often care
about a particular performance measure such as
Mot.

Theorem 16. There is free lunch for the problem
m under the performance measure Mot for all prob-
lem contexts with sufficiently large search space (the
required size depending on the reference machine
only).

The proof is similar to Theorem 15, but more work
is required to ensure a complexity difference between
two potential maximums, rather than between two
specific functions. A full proof is included in the
Appendix.

7 Upper Bounds

Theorems 15 and 16 show that there is free lunch
under the universal distribution. This section will
bound the amount of free lunch available, and show
that it is only possible to outperform random search
by a constant factor. First we show that the per-
formance of computable optimisers deteriorates lin-
early with the worst-case scenario and the size of
the search space. This result applies to decidable
performance measures in general, and has a concrete
interpretation for Mot, where it implies that as the
size of the domain is increased, a non-zero fraction
of the domain must be probed before a maximum
is found in expectation. This does not contradict
the free lunches above, as the required fraction may
differ between optimisers.

We also consider possible ways to circumvent the
negative result described above by means of incom-
putable search procedures. A further negative result

6

for Mot is obtained: It does not appear possible to
find the maximum with only o(|X|) target function
evaluations. That is, the expected number of probes
required to find the maximum grows linearly with
the size of the search space, but again, the propor-
tion may differ substantially between optimisers.

7.1 Computable optimisers

To bound the amount of free lunch available for com-
putable optimisers, we will adapt a proof-technique
for showing that average-case complexity is equal
to the worst-case complexity under the universal
distribution [LV08, Section 4.4]. Although no for-
mal theorem relies on it, we will think of greater
M -values as worse performance.

Lemma 17. A function fbad : X → Y is maxi-
mally bad for an optimiser a on the problem con-
text X,Y with respect to a performance measure
M if MXY (T y(a, fbad)) = maxR∈R(X,Y)MXY (R).
There always exists a maximally bad function
fbad : X → Y for a with respect to M , regardless
of the performance measure M , the optimiser a and
the problem context X,Y .

Proof. By Lemma 12, all optimisers produce the
same result vectors, so it suffices to show that some
optimiser has a maximally bad function. The non-
adaptive optimiser e that searches X in order has
a maximally bad function. To see this, let Rbad be
a maximally bad result vector on X,Y , and let f
be the function satisfying f(xi) = Rbad[i] for all
xi ∈ X. Then e produces Rbad on f .

A performance measure M for which there is an
algorithm deciding whether MXY (R1) < MXY (R2)
for every X,Y and every pair of result vectors
R1, R2 ∈ R(X,Y) is decidable. For any decidable
performance measure M , it is possible to create a
procedure FindWorst(a,X, Y) that given a com-
putable optimiser a (specified by some binary string)
and a context X,Y , returns a maximally bad func-
tion fbad : X → Y for a. FindWorst is a com-
putable operation since a is computable and M is
decidable: FindWorst need only simulate a on all
possible functions in Y X , and output one that yields
a worst result vector. This shows that for all decid-
able performance measures, all computable optimis-
ers a and all contexts X,Y , there is a maximally
bad function fbad : X → Y for a with complexity

K(fbad |X,Y) ≤ `(FindWorst) + `(a) + c , (5)

where the c term depends only on the reference
machine, and absorbs the cost for initialising Find-
Worst with a, X and Y . Pivotally, the bound

is independent of X,Y . This is the central obser-
vation behind the following theorem, which shows
that expected performance always deteriorates lin-
early with the worst-case scenario. The theorem’s
prime relevance is for performance measures whose
worst-case value grows with X.

Theorem 18 (Almost NFL for m). For every decid-
able performance measure M and every computable
optimiser a there exists a constant ca > 0 such that
for all X,Y

Mm
XY (a) ≥ ca max

R∈R(X,Y)
MXY (R) .

Proof. Let X,Y be a problem context and fbad be
the output of FindWorst(a,X, Y), then

Mm
XY (a) =

∑
f∈Y X

mXY (f)MXY (T y(Y, a, f))

≥ cmXY
2−K(fbad|X,Y)MXY (T y(a, fbad)) ,

where we have first used the definition (1) of perfor-
mance measures, and then that the sum of non-
negatives is greater than all of its terms. But
cmXY

2−K(fbad|X,Y) ≥ ca for some ca > 0 inde-
pendent of X,Y due to cmXY

≥ 1 and the com-
plexity bound (5). And T y(a, fbad) was a worst
result vector by the construction of FindWorst.
Combined, this gives the bound Mm

XY (a) ≥ ca ·
maxR∈R(X,Y)MXY (R).

This theorem shows that for every performance
measure M , there is only a constant amount of free
lunch available in an asymptotic sense. It has no
impact on performance measures whose worst-case
value does not grow unboundedly with either X or
Y . However, the “semi-assumption” of higher values
being worse is not necessary: If the converse is the
case and high values are better, then the proposition
shows that all optimisers will do well. Indeed, this
is also an NFL result, as it implies that random
search (and even optimisers designed to do poorly!)
will perform well.

Applied to the performance measure Mot, The-
orem 18 has a fairly concrete interpretation: For
any computable optimiser a, the expected num-
ber of evaluations to find the maximum grows lin-
early with |X|. Corollary 19 follows immediately
from Theorem 18 and the observation that for any
context X,Y , the worst-case scenario is to find
a maximum only at the very last probe; that is,
maxR∈R(X,Y)Mot,XY (a) = |X|.

Corollary 19. For every computable optimiser a
there exists a constant ca > 0 such that Mm

ot,XY (a) ≥
ca · |X| for all optimisers a and all problem contexts
X,Y .

7

The implications of this result should not be over-
stated. The constant ca may be very small; for
example, if the description of the optimiser a is 100
bits long, then ca becomes of the order 2−100. The
fact that the expected number of probes is forced
to grow linearly with such a constant is mainly of
theoretical importance. Nonetheless, the result does
illustrate a fundamental hardness of optimisation,
and shows that the universal distribution does not
provide enough bias for efficient (sublinear) maxi-
mum finding.

7.2 Needle-in-a-haystack functions

A problematic class of functions is the class of so-
called needle-in-a-haystack (NIAH) functions. We
will use them to generalise Corollary 19 to incom-
putable optimisers. A NIAH-function is a target
function that is 0 in all points except one where
it equals 1. The exception point is called the nee-
dle. It should be intuitively clear that it is hard to
find the maximum of a NIAH-function. Probing a
NIAH-function, the output will generally just turn
out to be 0 and provide no clues to where the needle
might be.

Formally, for any X,Y let NIAHXY be the class
of NIAH functions on X,Y and let uNIAH be the
uniform NIAH problem defined as uNIAH,XY (f) :=
1/|NIAHXY | if f ∈ NIAHXY and 0 otherwise. The
function class NIAHXY is c.u.p. for any X,Y , so
NFL holds for uNIAH,XY by Theorem 11. The
expected performance (of any optimiser) on the
uniform NIAH-problem can be calculated from a
general result of Igel and Toussaint [IT03]. They
show that for any c.u.p. problem uF where F only
contains functions with exactly m maxima, the
expected number of probes to find a maximum
is (|X|+ 1)/(m+ 1). The NIAH-functions have
exactly one maximum, which gives the following
lemma.

Lemma 20. Under uNIAH,XY , the expected opti-
misation time is MuNIAH

ot,XY (a) = (|X|+ 1)/2 for any
optimiser a.

One feature that makes the NIAH-class more
problematic than other c.u.p. function classes is
that the NIAH-functions all have fairly low complex-
ity (as remarked by [SVW01, BP06]). The NIAH-
functions have low complexity, since to encode a
NIAH-function one only needs to encode that it is
NIAH (which takes a constant number of bits) and
the position of the needle (which requires at most
log2|X| bits). A NIAH-function thus has complexity
of order O(log2|X|); in comparison, a random func-
tion has exponentially greater complexity (above
|X|log2|Y |).

The NIAH-measure is computable. This is intu-
itively obvious, and easily verified against the formal
definitions of computable functions. Definitions of
real-valued computable functions can be found in
[LV08]. It is well-known that m dominates any
computable measure in the following sense.

Lemma 21 (m dominates uNIAH). There is a con-
stant cNIAH > 0 such that for all X,Y and all
functions f : X → Y , it holds that mXY (f) ≥
cNIAH · uNIAH,XY (f).

7.3 Incomputable optimisers

Theorem 18 and Corollary 19 were proven for com-
putable optimisers. We now show that even incom-
putable optimisers suffer a linearly growing loss in
|X| when the performance measure is Mot. Incom-
putable search procedures may seem like remote
objects of concern, but for example the (Bayes-
)optimal procedure for m is incomputable due to
the incomputability of m. Therefore, incomputable
procedures do at least have theoretical interest.

The following theorem generalises Corollary 19 to
incomputable search procedures, showing that they
also must search a linearly growing portion of X to
find the maximum. The theorem does not generalise
to arbitrary performance measures however, so the
analogous generalisation of Theorem 18 may not be
true.

Theorem 22 (Almost NFL for m and Mot). Under
m, the expected optimisation time grows linearly
with |X|, regardless of the optimisation strategy.

Proof. The dominance of m over uNIAH is used in
(7), between an expansion (6) and a contraction
(8) according to the definition (1) of performance
measures:

Mm
ot,XY (a) =

∑
f∈Y X

mXY (f)Mot,XY (T y(a, f)) (6)

≥ cNIAH

∑
f∈Y X

uNIAH,XY (f)Mot,XY (T y(a, f))

(7)

= cNIAH ·MuNIAH

ot,XY (a) (8)

Lemma 20 established (8) to be cNIAH · (|X|+ 1)/2
for all optimisers a. Thus the expected Mot-
performance is always bounded below by cNIAH ·
(|X|+ 1)/2, which grows linearly with |X|.

Since optimisation time can never grow faster
than linearly with |X|, the bound is asymptotically
tight. In this sense, Theorem 22 may be viewed as
an asymptotic almost-NFL theorem for the universal
distribution and Mot. The constant cNIAH in the

8

proof may be very small however, so Theorem 22
does not rule out that expected optimisation time
differ substantially between optimisers.

8 Conclusion

In this paper we investigated the No Free Lunch
theorems when the performance of an algorithm is
measured in expectation with respect to Solomon-
off’s universal distribution. We showed in Theorem
15 that there is a free lunch with respect to this
distribution.

Somewhat surprisingly, despite the bias away from
randomness exhibited by the universal distribution,
the size of the free lunch turns out to be quite small,
at least asymptotically (Theorems 18 and 22). The
reason for this is that there are many functions
that are both simple and hard to optimise. Most
notably the needle-in-a-haystack functions, which
have complexity of at most O(log |X|), but for which
a maximum cannot be found without O(|X|) probes.

It should be emphasised that there is little need
to be too gloomy about the negative results. The
upper bounds on the size of the free lunch given in
both negative theorems depend on constants that in
practise are likely to be very small. Optimisation is
a hard problem, so we should not be too surprised
if there are some reasonably frequently occurring
functions that cannot be efficiently optimised.

The fact that simplicity is not a sufficient charac-
terisation of the difficulty of optimising a function
is unfortunate. This is not true in other domains
such as supervised learning and sequence prediction
where approaches based on Solomonoff’s universal
prior are theoretically optimal in a certain sense
[Hut05]. One difficulty of optimisation lies in the
exploration/exploitation problem, which occurs be-
cause at each time-step an optimisation algorithm
must make a choice between trying to learn the true
function and probing the point that it believes to
be the maximum.

Since Kolmogorov complexity is (by itself) insuf-
ficient for characterising the difficulty of optimising
a function, a new criterion is required. We are cur-
rently unsure what this should look like and consider
this interesting future research.

References

[AT07] Anne Auger and Olivier Teytaud. Con-
tinuous lunches are free! In GECCO’07,
2007.

[BP06] Yossi Borenstein and Riccardo Poli. Kol-
mogorov complexity, optimization and

hardness. In CEC’06, pages 112–119,
2006.

[Cal02] Cristian Calude. Information and ran-
domness: an algorithmic perspective.
Springer, 2002.

[CO01] Steffen Christensen and Franz Op-
pacher. What can we learn from no
free lunch? a first attempt to character-
ize the concept of a searchable function.
In GECCO’01, pages 1219–1226, 2001.

[DJW02] Stefan Droste, Thomas Jansen, and
Ingo Wegener. Optimization with ran-
domized search heuristics – the (A)NFL
Theorem, realistic scenarios, and diffi-
cult functions. Theoretical Computer
Science, 287(1):131–144, 2002.

[Fre92] Edward Fredkin. Finite nature. XXVI-
Ith Rencotre de Moriond, 1992.

[GO05] Evan J Griffiths and Pekka Orponen.
Optimisation, block designs and no free
lunch theorems. Information Processing
Letters, 94(2):55–61, 2005.

[GTW+11] Dov M Gabbay, Paul Thagard, John
Woods, Prasanta S Bandyopadhyay,
and Malcolm R Forster. Philosophy of
Statistics. Elsevier, 2011.

[Hut05] Marcus Hutter. Universal Artificial In-
telligence: Sequential Decisions based
on Algorithmic Probability. Lecture
Notes in Artificial Intelligence (LNAI
2167). Springer, 2005.

[Hut07] Marcus Hutter. On Universal Predic-
tion and Bayesian Confirmation. Theo-
retical Computer Science, 384(1):33–48,
2007.

[Hut12] Marcus Hutter. The subjective com-
putable universe. In Hector Zenil, ed-
itor, A Computable Universe: Under-
standing and Exploring Nature as Com-
putation, chapter 21, pages 399–416.
World Scientific, 2012.

[IT03] Christian Igel and Marc Toussaint. Neu-
trality and self-adaptation. Natural
Computing, 2(2):117–132, 2003.

[IT04] Christian Igel and Marc Toussaint. A
no-free-lunch theorem for non-uniform
distributions of target functions. Jour-
nal of Mathematical Modelling and Al-
gorithms, 3:312–322, 2004.

[Jan13] Thomas Jansen. Analyzing Evolution-
ary Algorithms: The Computer Science
Perspective. Springer Berlin Heidelberg,
2013.

[JC11] Pei Jiang and Ying-ping Chen. Free

9

lunches on the discrete Lipschitz
class. Theoretical Computer Science,
412(17):1614–1628, April 2011.

[LH11] Tor Lattimore and Marcus Hutter. No
free lunch versus Occam’s razor in su-
pervised learning. In Proceedings of the
Solomonoff 85th Memorial Conference,
Melbourne, Australia, November 2011.
Springer.

[LV08] Ming Li and Paul Vitanyi. Kol-
mogorov Complexity and its Applica-
tions. Springer Verlag, third edition,
2008.

[McG06] Simon McGregor. No free lunch and
algorithmic randomness. In GECCO’06,
pages 2–4, 2006.

[RH11] Samuel Rathmanner and Marcus Hut-
ter. A philosophical treatise of universal
induction. Entropy, 13(6):1076–1136,
2011.

[RVW09] Jonathan E Rowe, Michael D Vose, and
Alden H Wright. Reinterpreting no
free lunch. Evolutionary computation,
17(1):117–129, January 2009.

[Str03] Matthew J Streeter. Two broad classes
of functions for which a no free lunch
result does not hold. In GECCO’03,
pages 1418–1430, 2003.

[SVW01] Christopher W Schumacher, Michael D
Vose, and L Darrell Whitley. The no free
lunch and problem description length.
In GECCO’01, pages 565–570, 2001.

[WM97] David H Wolpert and William G
Macready. No free lunch theorems
for optimization. IEEE Transactions
on Evolutionary Computation, 1(1):270–
283, 1997.

[Wol02] Stephen Wolfram. A New Kind of Sci-
ence. Wolfram Media, 2002.

[WR06] L Darrell Whitley and Jonathan E
Rowe. Subthreshold-seeking local
search. Theoretical Computer Science,
361(1):2–17, 2006.

Appendix

We here include a proof of Theorem 16. The proof
builds on the following definitions and lemmas.

Definition 23. A point x ∈ X is incompressible
with respect to the context X,Y if K(x|X,Y) ≥
log(|X|).

At least half of the points of any search space will
be incompressible. Functions that only have incom-
pressible maxima (except, possibly, for a maximum

at x1) will play an important role since they are
guaranteed to have high complexity. The reason
for excluding x1 will be apparent in the proof of
Theorem 16.

Lemma 24. Let X,Y be a problem context, and
let D ⊆ X be a non-empty set of incompressible
points. Let g : X → Y have at least one maximum
in D, and no maximum outside D ∪ {x1}. Then
K(g |X,Y) ≥ log2(|X|) − c, where c depends only
on the reference machine and not on g, X or Y .

Proof. Let g be as in the Lemma statement, and
let xm ∈ X − {x1} be the first maximum of g
not at x1. Then xm can be coded by means of g
with constant length procedure FirstMax(g) that
computes the first maximum not at x1 for a given
function g. Hence K(xm |X,Y) ≤ K(g |X,Y) +
`(FirstMax) + c. The constant c depends only
on the reference machine, and absorbs the cost of
initialising FirstMax with a provided description
of g.

By assumption xm was incompressible, so
K(xm |X,Y) ≥ log2|X|. Combined and rearranged,
this gives K(g |X,Y) ≥ log2|X|−`(FirstMax)−c.
The lemma now follows by absorbing `(FirstMax)
into c.

We are now ready for the proof of Theorem 16
that shows that there is free lunch for Mot on the
problem m. The key idea is to show that there
is a trace after which two unexplored points have
different probability of being the maximum.

Theorem 16. There is free lunch for the problem
m under the performance measure Mot for all prob-
lem contexts with sufficiently large search space (the
required size depending on the reference machine
only).

Proof. Let k ≥ 2 and let X,Y be a problem context
with |X| ≥ 2k. Let Dk ⊆ X be of size k and only
include incompressible points. Let Q = X −Dk −
{x1}. Let G = {g ∈ Y X : x ∈ Q =⇒ g(x) = 0}
contain all functions that are 0 on Q. Let f be
0 everywhere, except at x1, where f is 1. The
complexity of f is upper bounded by a constant cf
independent of X. Since f ∈ G, we get mXY (G) ≥
mXY (f) ≥ 2−cf .

Let xm ∈ Dk be an incompressible point, and let
Gm = {g ∈ G : g(xm) = max g}. As the functions
in G are all 0 on Q, the cardinality of Gm is at
most |Y ||X−Q| = |Y |k+1. Also, the functions in Gm
all have complexity above log |X| − c for some c
independent of X,Y , by Lemma 24.

We will now show that mXY (Gm|G) tends to
0 with growing |X|, while mXY (f |G) remains
bounded away from 0. This will establish that

10

provided G, a maximum at x1 is more likely than
a maximum at xm. Provided G, the probability
of a maximum at x1 is always above 2−cf , since
mXY (max at x1|G) ≥ mXY (f |G) ≥ mXY (f) ≥
2−cf . A maximum at xm, on the other hand, is
less likely since only functions in Gm can have a
maximum there:

mXY (max at xm|G) = mXY (Gm)/mXY (G)

≤mXY (Gm)/2−cf

= 2cf · cmXY

∑
g∈Gm

2−K(g |X,Y)

(9)

Using the lower bound on the complexity from
Lemma 24, (9) is bounded by

≤ 2cf · cmXY

∑
g∈Gm

2−log2|X|+c

= 2cf · cmXY
|Gm| · 2−log2|X|+c

(10)

and since the cardinality of G1 is less than |Y |k+1
,

(10) is bounded by

≤ 2cf · cmXY
· |Y |k+1 · 2−log2|X|+c

=
2cf+c · cmXY

· |Y |k+1

|X|
(11)

the last equality by elementary simplification.

As cmXY
is bounded above by a constant cm for

all X,Y , (11) goes to 0 with growing search space
(and fixed k and Y). This shows that for large
enough search spaces, x1 is more likely to host a
maximum than xm.

Now all that remains is to use this to create two
algorithms that perform differently under Mot. Let
a start by searching Q in order. If the perceived
function points are consistent with f (i.e., the event
G is verified), then a proceeds at x1 and then at xm,
whereafter a searches the remaining points X−Dk−
{x1} in order. If the trace is not consistent with
f , then a directly proceeds to search all remaining
points in order. Define b the same way, with the
only exception that after Q it searches xm before
x1 in case the trace is consistent with f .

This way, a and b will perform the same except
when encountering a function in G, in which case
a will have a strictly better chance of finding the
maximum at step |Q|+ 1. If neither a nor b finds
a maximum at step |Q| + 1, then neither x1 nor
xm is a maximum, so neither a nor b will find a
maximum at step |Q| + 2 either. Finally, on step
|Q|+ 3 and onwards their behaviour will again be

identical, and therefore also their Mot performance.
So a has a strictly better chance at step |Q|+ 1 and
a and b’s performance is identical on all other steps
and in all other situations. This shows that there
is a (possibly small) free lunch for Mot on m for
sufficiently large search spaces.

11

	Introduction
	Preliminaries
	The universal distribution
	No Free Lunch
	Performance measures
	Universal Free Lunch
	Upper Bounds
	Conclusion
	References
	Appendix

