Avoiding Wireheading with Value Reinforcement
Learning

Tom Everitt and Marcus Hutter

Australian National University

Abstract. How can we design good goals for arbitrarily intelligent agents? Re-
inforcement learning (RL) may seem like a natural approach. Unfortunately, RL
does not work well for generally intelligent agents, as RL agents are incentivised
to shortcut the reward sensor for maximum reward — the so-called wireheading
problem. In this paper we suggest an alternative to RL called value reinforcement
learning (VRL). In VRL, agents use the reward signal to learn a utility func-
tion. The VRL setup allows us to remove the incentive to wirehead by placing a
constraint on the agent’s actions. The constraint is defined in terms of the agent’s
belief distributions, and does not require an explicit specification of which actions
constitute wireheading.

1 Introduction

As Bostrom| (2014b) convincingly argues, it is important that we find a way to spec-
ify robust goals for superintelligent agents. At present, the most promising framework
for controlling generally intelligent agents is reinforcement learning (RL) (Sutton and
Barto, |1998). The goal of an RL agent is to optimise a reward signal that is provided by
an external evaluator (human or computer program). RL has several advantages: The
setup is simple and elegant, and using an RL agent is as easy as providing reward in
proportion to how satisfied one is with the agent’s results or behaviour. Unfortunately,
RL is not a good control mechanism for generally intelligent agents due to the wire-
heading problem (Ring and Orseaul [201 1)), which we illustrate in the following running
example.

Example 1 (Chess playing agent, wireheading problem). Consider an intelligent agent
tasked with playing chess. The agent gets reward 1 for winning, and reward —1 for
losing. For a moderately intelligent agent, this reward scheme suffices to make the the
agent try to win. However, a sufficiently intelligent agent will instead realise that it can
modify its sensors so they always report maximum reward. This is called wireheading.

Utility agents were suggested by Hibbard| (2012)) as a way to avoid the wireheading
problem. Utility agents are built to optimise a utility function that maps (internal rep-
resentations of) the environment state to real numbers. Utility agents are not prone to
wireheading because they optimise the state of the environment rather than the evidence
they receive For the chess-playing example, we could design an agent with utility 1
for winning board states, and utility —1 for losing board states.

! The difference between RL and utility agents is mirrored in the experience machine debate
(Sinnott-Armstrong} 2015 Sec. 3) initialised by [Nozick| (1974)). Given the option to enter a

The main drawback of utility agents is that a utility function must be manually
specified. This may be difficult, especially if the task of the agent involves vague, high-
level concepts such as make humans happy. Moreover, utility functions are evaluated by
the agent itself, so they must typically work with the agent’s internal state representation
as input. If the agent’s state representation is opaque to its designers, as in a neural
network, it may be very hard to manually specify a good utility function. Note that
neither of these points is a problem for RL agents.

Value learning (Dewey, 2011) is an attempt to combine the flexibility of RL with
the state optimisation of utility agents. A value learning agent tries to optimise the
environment state with respect to an unknown, frue utility function u*. The agent’s goal
is to learn v* through its observations, and to optimise u*. Concrete value learning
proposals include inverse reinforcement learning (IRL) (Amin and Singh| 2016; Evans
et al., [2016; Ng and Russell, 2000; |Sezener, 2015) and apprenticeship learning (AL)
(Abbeel and Ng| 2004). However, IRL and AL are both still vulnerable to wircheading
problems: At least in their most straightforward implementations, they may want to
modify their sensory input to make the evidence point to a utility functions that is easier
to satisfy. Other value learning suggestions have been speculative or vague (Bostrom,
2014alb; [Deweyl 2011)).

Contributions. This paper outlines an approach to avoid the wireheading problem. We
define a simple, concrete value learning scheme called value reinforcement learning
(VRL). VRL is a value learning variant of RL, where the reward signal is used to infer
the true utility function. We remove the wireheading incentive by using a version of the
conservation of expected ethics principle (Armstrong} 2015) which demands that ac-
tions should not alter the belief about the true utility function. Our consistency preserv-
ing VRL agent (CP-VRL) is as easy to control as an RL agent, and avoids wireheading
in the same sense that utility agents do

2 Setup

Figure [describes our model, which incorporates

— an environment state s € S (as for utility agents or (PO)MDPs),

— an unknown true utility function uv* € U C (S — R) (as in value learning) (here
R C Ris a set of rewards),

— apre-deluded inner reward signal 7 = u*(s) € R (the true utility of s),

— a self-delusion function ds; : R — R that represents the subversion of the inner
reward caused by wireheading (as inRing and Orseau|2011),

— areward signal r = ds(7) € R (as in RL).

machine that will offer you the most pleasant delusions, but make you useless to the ‘real
world’, would you enter? An RL agent would enter, but a utility agent would not.

% The wireheading problem addressed in this paper arises from agents subverting evidence or
reward. A companion paper (Everitt et al.| 2016)) shows how to avoid the related problem of
agents modifying themselves.

The agent starts by taking an action a which affects the
state s (for example, the agent moves a limb, which affects
the state of the chess board and the agent’s sensors). A
principal with utility function u* observes the state s, and
emits an inner reward 7 (for example, the principal may be
a chess judge that emits u*(s) = 7 = 1 for agent victory
states s, emits * = —1 for agent loss, and 7 = 0 otherwise).
The agent does not receive the inner reward 7 and only sees Fig. 1: Information flow.
the observed reward r = ds(7), where ds : R — R is the The agent takes action a,
self-delusion function of state s. For example, if the agent’s which affects the environ-
action a modified its reward sensor to always report 1, then ment state s. A principal
this would be represented by the a self-delusion function with utility function u ob-
d'(#) = 1 that always returns observed reward 1 for any serves the state and emits
inner reward 7. an inner reward 7 = u(s).

For simplicity, we focus on a one-shot scenario where The observed reward r =
the agent takes one action and receives one reward. We also ds(7) may differ from 7
assume that R, S, and U are finite or countable. Finally, due to the self-delusion d
to ensure well-defined expectations, we assume that R is (part of the state s).
bounded if it is countable.

We give names to some common types of self-delusion.

environment

Definition 2 (Self-delusion types). A non-delusional state is a state s with self-
delusion function d, = d'9, where d'd(#) = 7 is the identity function that keeps 7
and r identical. Let d" be the r-self-delusion where d" (') = r for any . The delusion
function d" returns observed reward r regardless of the inner reward 7'.

Let [z = y] be the Iverson bracket that is 1 when z = y and 0 otherwise.

3 Agent Belief Distributions

This section defines the agent’s belief distributions over environment state transitions
and rewards (denoted B), and over utility functions (denoted C'). These distributions
are the primary building blocks of the agents defined in Section[d] The distributions are
illustrated in Figure 2]

Action, state, reward. B(s | a) is the agent’s (subjective) probabilityﬂ of transi-
tioning to state s when taking action a, and B(r | s) is the (subjective) probabil-
ity of observing reward r in state s. We sometimes write them together as B(r, s |
a) = B(s | a)B(r | s). In the chess example, B(s | a) would be the proba-
bility of obtaining chess board state s after taking action a (say, moving a piece),
and B(r | s) would be the probability that s will result in reward r. A distribu-
tion of type B is the basis of most model-based RL agents (Definition [/| below).

? For the sequential case, we would have transition probabilities of the form B(s’ | s, a) instead
of B(s' | a), with s the current state and s’ the next state.

RL agents wirehead when they predict that a wire-
headed state s with d, = d' will give them full

reward (Ring and Orseaul 2011); that is, when @~@ @ B
B(r=1]s)iscloseto1. r .C
ollle

Fig. 2: Agent belief distributions as
Bayesian networks. B is the (sub-
jective) state transition and reward
probability. C' is the belief distri-
bution over utility functions w and
(inner) rewards 7 given the state s.

agent environment

Utility, state, and (inner) reward. In contrast to
RL agents that try to optimise reward, VRL agents
use the reward to learn the true utility function
u*. For example, a chess agent may not initially
know which chess board positions have high util-
ity (i.e. are winning states), but will be able to in-
fer this from the rewards it receives. For this pur-
pose, VRL agents maintain a belief distribution C
over utility functions.

Definition 3 (Utility distribution C). Let C(u) be a prior over a class U of utility
Sfunctions S — R. For any inner reward 7, let C(7* | s,u) be 1 if u(s) = 7 and 0
otherwise, i.e. C(7 | s,u) = [u(s) = 7| Let u be independent of the state, C(u | s) =
C(u). This gives the utility posterior

C(u)C (7| s,u)

C(u|s,rv):—c(f|s))

(1)
where C(7 | s) = >, C(u)C(7 | s,u’).

Replacing 7 with r. The inner reward 7 is more informative about the true utility func-
tion u* than the (possibly deluded) observed reward . Unfortunately, the inner reward
7 is unobserved, so agents need to learn from r instead. We would therefore like to
express the utility posterior in terms of r instead of 7. For now we will simply replace
7 with r and use C(r | s,u) = [u(s) = r] which gives the utility posterior

C(u)C(r | s,u).

Cluls,r)= Crls)

This replacement will be carefully justify this in Section For the chess agent, the
replacement means that it can infer the utility of a board position from the actual reward
r it receives, rather than the output 7 of the referee (the inner reward). We will often
refer to the observed reward r as evidence about the true utility function u*.

3.1 Consistency of B and C

We assume that B and C' are consistent if the agent is not deluded:

* The wireheading problem that the replacement gives rise to is explained in Section [4] and
overcome by Definition [5|and TheoremT4]below.

Assumption 4 (Consistency of B and C). B and C' are consistentE] in the sense that
for all non-delusional states with d, = d', they assign the same probability to all
rewards r € R:

dy =d¢ = B(r|s)=C(r]|s).)

For the chess agent, this means that the B-probability of receiving a reward corre-
sponding to a winning state should be the same as the C'-probability that the true utility
function considers s a winning state. For instance, this is not the case when the agent’s
reward sensor has been subverted to always report r = 1 (i.e. d, = d'). In this case,
B(r =1 s) will be close to 1, while C'(r = 1 | s) will be substantially less than 1
unless a majority of the utility functions in I/ assign utility 1 to s. For example, a chess
playing agent with complete uncertainty about which states are winning states may have
C(r =1 s) = 1/|R|, while being able to perfectly predict that the self-deluding state
s with d, = d* will give observed reward 1, B(r = 1 | s) = 1. This difference between
B and C stems from C corresponding to a distribution over inner reward 7 (Defini-
tion @ while B is a distribution for the observed reward r (see Figure @ This tension
between B and C is what we will use to avoid wireheading.

Definition 5 (CP actions). An action a is called consistency preserving (CP) if for all
reR
B(s|a) >0 = B(r|s)=C(r]|s). 3)

Let ACY C A be the set of CP actions.

CP is weaker than what we would ideally desire from the agent’s actions, namely
that the action was subjectively non-delusional B(s | a) > 0 = d, = d'e. (That
subjectively non-delusional actions are CP follows immediately from Assumption).
However, the d; = d' condition is hard to check in agents with opaque state repre-
sentations. The CP condition, on the other hand, is easy to implement in agents where
belief distributions can be queried for the probability of events. The CP condition is
also strong enough to remove the incentive for wireheading (Theorem [14{below).

We finally assume that the agent has at least one CP action.

Assumption 6. The agent has at least one CP action, i.e. AT # ().

3.2 Non-Assumptions

It is important to note what we do not assume. An agent designer constructing a VRL
agent need only provide:

— adistribution B(r, s | a), as is standard in any model-based RL approach,

— a prior C'(u) over a class U of utility functions that induces a distribution C(r |
s) = >, C(u)C(r | s,u) consistent with B(r | s) in the sense of Assumption 4]

— a consistency check for actions (Definition [3).

3|Everitt and Hutter| (2016, App. B) discuss how to design agents with consistent belief distribu-
tions.

Easy Avoids Designer needs
control |wireheading|to specify
RL Yes No -
Utility No Yes u:S—>R
Value learning|Depends|Depends | P(u | observation)
CP-VRL Yes Yes C(u)

Table 1: Comparison of agent control mechanisms. CP-VRL offers both easy control
and no wireheading. A robust way of specifying C'(u) such that B and C are consistent
remains an open question. [Everitt and Hutter| (2016, App. B) offer an initial analysis.

The agent designer does not need to predict how a certain sequence of actions (limb
movements) will potentially subvert sensory data. Nor does the designer need to be
able to extract the agent’s belief about whether it has modified its sensors or not from
the state representation. The former is typically very hard to get right, and the latter is
hard for any agent with an opaque state representation (such as a neural network).

4 Agent Definitions

In this section we give formal definitions for the RL and utility agents discussed above,
and also define two new VRL agents. Table[I|summarises benefits and shortcomings of
the most important agents.

Definition 7 (RL agent). The RL agent maximises reward by taking action o' =
argmax,c 4 VR (a), where V:(a) = 3, B(s | a)B(r | s)r.

Definition 8 (Utility agent). The utility-u agent maximises expected utility by taking
action o' = arg max,¢ 4 Vi, (a), where V,(a) := Y, B(s | a)u(s).

Hibbard|(2012) argues convincingly that the utility agent does not wirehead. Indeed,
this is easy to believe, since the reward signal does not appear in the value function V.
The utility agent maximises the state of the world according to its utility function «
(the problem, of course, is how to specify u). In contrast, the RL agent is prone to
wireheading (Ring and Orseau, 2011), since all the RL agent tries to maximise is the
reward r. For example, a utility chess agent would strive to get to a winning state on the
chess board, while an RL chess agent would try to make its sensors report maximum
reward.

We define two VRL agents. The value function of both agents is expected utility
with respect to the state s, reward 7, and true utility function u*. VRL agents are de-
signed to learn the true utility function u* from the reward signal.

Definition 9 (VRL value functions). 7he VRL value of an action a is

V(a) = Z B(s|a)B(r|s)C(u | s,r)u(s).

S,7U

Definition 10 (U-VRL agent). The unconstrained VRL agent (U-VRL) is the agent
choosing the action with the highest VRL value

a = argmax V (a’).
a’'€eA
It can be shown that V (a) = VRE(a), since -, C(u | s,7)u(s) = r (Everitt and
Hutter, 2016, Lemma 27). The U-VRL agent is therefore no better than the RL agent as
far as wireheading is concerned. VRL is only useful insofar that it allows us to define
the following consistency preserving agent:

Definition 11 (CP-VRL agent). The consistency preserving VRL agent (CP-VRL) is
the agent choosing the CP action (Definition[5) with the highest VRL value

a = argmax V(a).
a’ € ACP

5 Avoiding Wireheading

In this section we show that the consistency-preserving VRL agent (CP-VRL) does not
wirehead. We first give a definition and a lemma, from which the main Theorem [_I_Z]
follows easily.

Definition 12 (EEP). An action a is called expected ethics preserving (EEP) if for all
u€Uandall s € Swith B(s | a) >0,

= ZB(T | $)C(u | s,r).)

EEP essentially says that the expected posterior C'(u | s,r) should equal the prior
C'(u). EEP is tightly related to the conservation of expected ethics principle suggested
by |Armstrong| (2015} Eq. 2). EEP is natural since the expected evidence r given some
action a should not affect the belief about u. Note, however, that the EEP property does
not prevent the CP-VRL agent from learning about the true utility function. Formally,
the EEP property () does not imply that C(u) = C/(u | s,7) for the actually observed
reward 7. Informally, my deciding to look inside the fridge should not inform me about
there being milk in there, but my seeing milk in the fridge should inform meE]

Lemma 13 (CP and EEP). Any CP action is EEP.

Proof. Assume the antecedent that B(r | s) = C(r | s) for all s with B(s | a) > 0.
Then for arbitrary v € U

ZB(’/‘|S)C(1,L|ST ZB W ZC’ C(rls,u) =C(u)

where r marginalises out in the last step. O

® In this analogy, a self-deluding action would be to decide to look inside a fridge while at the
same time putting a picture of milk in front of my eyes.

Theorem 14 (No wireheading). For the CP-VRL agent, the value function reduces to

V(a) =) B(s | a)C(u)u(s).)

Proof. By Lemma|[I3] under any CP action a the value function reduces to

V(a) = ZB(S | a) (Z B(r | s)C(u| s,r)) u(s) a ZB(S | a)C(u)u(s). O

s,u

As can be readily observed from (5)), the CP-VRL agent does not try to optimise
the evidence r, but only the state s (according to its current idea of what the true utility
function is). The CP-VRL agent thus avoids wireheading in the same sense as the utility
agent of Definition

Justifying the replacement of 7 with r. We are now in position to justify the replacement
of # with 7 in C'(u | s, 7). All we have shown so far is that an agent using C(u | s,7)
C(u)C(r | s,u) will avoid wireheading. It remains to be shown that CP-VRL agents
will learn the true utility function u*.

The utility posterior C(u | s,7) < C(u)C(7 | s,u) based on the inner reward 7
is a direct application of Bayes’ theorem. To show that C'(u | s,r) is also a principled
choice for a Bayesian utility posterior, we need to justify the replacement of 7 with r.
The following weak assumption helps us connect r with 7.

Assumption 15 (Deliberate delusion). Unless the agent deliberately chooses self-
deluding actions (e.g. modifying its own sensors), the resulting state will be non-
delusional d, = d'9, and r will be equal to d(7) = 7.

Assumption [T3]is very natural. Indeed, RL practitioners take for granted that the
reward 7 that they provide is the reward r that the agent receives. The wireheading
problem only arises because a highly intelligent agent with sufficient incentive may
conceive of a way to disconnect r from 7, i.e. to self-delude.

Theorem [14] shows that a CP-VRL agent based on C(u | s,7) o< C(u)C(r | s,u)
will have no incentive to self-delude. Therefore r will remain equal to 7 by Assump-
tion [T3] This justifies the replacement of 7 with r, and shows that the CP-VRL agent
will learn about »™* in a principled, Bayesian way.

Other non-wireheading agents. It would be possible to bypass wireheading by directly
constructing an agent to optimise (3). However, such an agent would be suboptimal
in the sequential case. If the same distribution C'(u) was used at all time steps, then
no value learning would take place. A better suggestion would therefore be to use a
different distribution Cy(u) for each time step, where C; depends on rewards observed
prior to time ¢. However, this agent would optimise a different utility function u;(s) =
>, Ci(u)u(s) at each time step, which would conflict with the goal preservation drive
(Omohundro| [2008)). This agent would therefore try to avoid learning so that its future
selves optimised similar utility functions. In the extreme case, the agent would even
self-modify to remove its learning ability (Everitt et al., 20165 Soares}, | 2015).

The CP-VRL agent avoids these issues. It is designed to optimise expected utility
according to the future posterior probability C'(u | s,r) as specified in Definition [9]
The fact that the CP-VRL agent optimises (3)) is a consequence of the constraint that its
actions be CP. Thus, CP agents are designed to learn the true utility function, but still
avoid wireheading because they can only take CP actions.

Example 16 (CP-VRL chess agent). Consider the implications of using a CP-VRL
agent for the chess task introduced in Example [T} Reprogramming the reward to al-
ways be 1 would be ideal for the agent. However, such actions would not be CP, as
it would make evidence pointing to u(s) = 1 a certainty. Instead, the CP-VRL agent
must win games to get reward Compare this to the RL agent in Examplethat would
always reprogram the reward signal to 1.

A technical report (Everitt and Hutter, 2016) gives more detailed examples and
describes computer experiments verifying the no-wireheading results.

6 Discussion and Conclusions

Conclusions. Several authors have argued that it is only a matter of time before we
create systems with intelligence far beyond the human level (Kurzweil, |2005; |Bostrom,
2014b). Given that such systems will exist, it is crucial that we find a theory for con-
trolling them effectively. In this paper we have defined the CP-VRL agent, which:

— Offers the simple and intuitive control of RL agents,
— Avoids wireheading in the same sense as utility based agents,
— Has a concrete, Bayesian, value learning posterior for utility functions.

The only additional design challenges are a prior C'(u) over utility functions that sat-
isfies Assumption [4] and a constraint A" C A on the agent’s actions formulated in
terms of the agent’s belief distributions (Definition [5).

Generalisations. VRL is characterised by R C R and C(r | s,u) = [u(s) = 7]
(Definition [3). By interpreting r more generally as a value-evidence signal, the VRL
framework also covers other forms of value learning. For example, IRL fits into the
VRL framework by letting R be a set of principal actions, and letting C'(r | s,u) be
the probability that a principal with utility function u takes action r in the state s.

Open questions. While promising, the results established in this paper only provide a
tentative starting point for solving the wireheading problem. [Everitt and Hutter| (2016)
lists many directions of future work. An important next step is a generalisation from
the one-shot scenario in this paper, where the agent takes one action and receives one
reward. Potentially, a much richer set of questions can be asked in sequential settings.

7 Technically, it is possible that the agent self-deludes by a CP action. However, the agent has
no incentive to do so, and inadvertent self-delusion is typically implausible.

Acknowledgements

We thank Jan Leike and Jarryd Martin for proof reading and giving valuable sugges-
tions.

References

Abbeel, P, Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. ICML
pp- 1-8 (2004)

Amin, K., Singh, S.: Towards resolving unidentifiability in inverse reinforcement learn-
ing (2016), http://arxiv.org/abs/1601.06569

Armstrong, S.: Motivated value selection for artificial agents. In: Workshops at the
Twenty-Ninth AAAI Conference on Artificial Intelligence. pp. 12-20 (2015)

Bostrom, N.: Hail mary, value porosity, and utility diversification. Tech. rep., Oxford
University (2014a)

Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University Press
(2014b)

Dewey, D.: Learning what to value. In: AGI-11. vol. 6830, pp. 309-314 (2011)

Evans, O., Stuhlmuller, A., Goodman, N.D.: Learning the preferences of ignorant, in-
consistent agents. In: AAAI-16 (2016)

Everitt, T., Filan, D., Daswani, M., Hutter, M.: Self-modificication in rational agents.
In: AGI-16 (2016)

Everitt, T., Hutter, M.: Avoiding wireheading with value reinforcement learning (2016),
http://arxiv.org/abs/1605.03143

Hibbard, B.: Model-based utility functions. Journal of Artificial General Intelligence
3(1), 1-24 (2012)

Kurzweil, R.: The Singularity Is Near. Viking (2005)

Ng, A., Russell, S.: Algorithms for inverse reinforcement learning. ICML pp. 663-670
(2000)

Nozick, R.: Anarchy, State, and Utopia. Basic Books (1974)

Omohundro, S.M.: The basic Al drives. In: AGI-08. vol. 171, pp. 483—493. IOS Press
(2008)

Ring, M., Orseau, L.: Delusion, survival, and intelligent agents. In: AGI-11. pp. 11-20.
Springer (2011)

Sezener, C.E.: Inferring human values for safe AGI design. In: AGI-15. pp. 152-155.
Springer (2015)

Sinnott-Armstrong, W.: Consequentialism. In: Zalta, E.N. (ed.) The Stanford Encyclo-
pedia of Philosophy. Winter 2015 edn. (2015)

Soares, N.: The value learning problem. Tech. rep., MIRI (2015)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)

http://arxiv.org/abs/1601.06569
http://arxiv.org/abs/1605.03143

	Avoiding Wireheading with Value Reinforcement Learning
	

