
Self-Modification of Policy and Utility Function in
Rational Agents

Tom Everitt, Daniel Filan, Mayank Daswani, and Marcus Hutter

Australian National University

Abstract. Any agent that is part of the environment it interacts with and has
versatile actuators (such as arms and fingers), will in principle have the ability to
self-modify – for example by changing its own source code. As we continue to
create more and more intelligent agents, chances increase that they will learn about
this ability. The question is: will they want to use it? For example, highly intelligent
systems may find ways to change their goals to something more easily achievable,
thereby ‘escaping’ the control of their creators. In an important paper, Omohundro
(2008) argued that goal preservation is a fundamental drive of any intelligent
system, since a goal is more likely to be achieved if future versions of the agent
strive towards the same goal. In this paper, we formalise this argument in general
reinforcement learning, and explore situations where it fails. Our conclusion is
that the self-modification possibility is harmless if and only if the value function
of the agent anticipates the consequences of self-modifications and use the current
utility function when evaluating the future.

1 Introduction

Agents that are part of the environment they interact with may have the opportunity to
self-modify. For example, humans can in principle modify the circuitry of their own
brains, even though we currently lack the technology and knowledge to do anything but
crude modifications. It would be hard to keep artificial agents from obtaining similar
opportunities to modify their own source code and hardware. Indeed, enabling agents to
self-improve has even been suggested as a way to build asymptotically optimal agents
(Schmidhuber, 2007).

Given the increasingly rapid development of artificial intelligence and the problems
that can arise if we fail to control a generally intelligent agent (Bostrom, 2014), it is
important to develop a theory for controlling agents of any level of intelligence. Since it
would be hard to keep highly intelligent agents from figuring out ways to self-modify,
getting agents to not want to self-modify should yield the more robust solution. In
particular, we do not want agents to make self-modifications that affect their future
behaviour in detrimental ways. For example, one worry is that a highly intelligent agent
would change its goal to something trivially achievable, and thereafter only strive for
survival. Such an agent would no longer care about its original goals.

In an influential paper, Omohundro (2008) argued that the basic drives of any
sufficiently intelligent system include a drive for goal preservation. Basically, the agent
would want its future self to work towards the same goal, as this increases the chances
of the goal being achieved. This drive will prevent agents from making changes to their

own goal systems, Omohundro argues. One version of the argument was formalised by
Hibbard (2012), who defined an agent with an optimal non-modifying policy.

In this paper, we explore self-modification more closely. We define formal models
for two general kinds of self-modifications, where the agent can either change its future
policy or its future utility function. We argue that agent designers that neglect the
self-modification possibility are likely to build agents with either of two faulty value
functions. We improve on Hibbard (2012, Prop. 4) by defining value functions for which
we prove that all optimal policies are essentially non-modifying on-policy. In contrast,
Hibbard only establishes the existence of an optimal non-modifying policy. From a
safety perspective our result is arguably more relevant, as we want that things cannot go
wrong rather than things can go right. A companion paper (Everitt and Hutter, 2016)
addresses the related problem of agents subverting the evidence they receive, rather than
modifying themselves.

2 Preliminaries

Most of the following notation is by now standard in the general reinforcement learning
(GRL) literature (Hutter, 2005, 2014). GRL generalises the standard (PO)PMD models
of reinforcement learning (Kaelbling et al., 1998; Sutton and Barto, 1998) by making no
Markov or ergodicity assumptions (Hutter, 2005, Sec. 4.3.3 and Def. 5.3.7).

In the standard cybernetic model, an agent interacts with an environment in cycles.
The agent picks actions a from a finite set A of actions, and the environment responds
with a percept e from a finite set E of percepts. An action-percept pair is an action
concatenated with a percept, denoted æ = ae. Indices denote the time step; for example,
at is the action taken at time t, and æt is the action-percept pair at time t. Sequences are
denoted xn:m = xnxn+1 . . . xm for n ≤ m, and x<t = x1:t−1. A history is a sequence
of action-percept pairs æ<t. The letter h = æ<t denotes an arbitrary history. We let ε
denote the empty string, which is the history before any action has been taken.

A belief ρ is a probabilistic function that returns percepts based on the history.
Formally, ρ : (A × E)∗ × A → ∆̄E , where ∆̄E is the set of full-support probability
distributions on E . An agent is defined by a policy π : (A × E)∗ → A that selects
a next action depending on the history. We sometimes use the notation π(at | æ<t),
with π(at | æ<t) = 1 when π(æ<t) = at and 0 otherwise. A belief ρ and a policy π
induce a probability measure ρπ on (A × E)∞ via ρπ(at | æ<t) = π(at | æ<t) and
ρπ(et | æ<tat) = ρ(et | æ<tat). We will assume that the utility of an infinite history
æ1:∞ is the discounted sum of instantaneous utilities u : (A× E)∗ → [0, 1]. That is, for
some discount factor γ ∈ (0, 1), ũ(æ1:∞) =

∑∞
t=1 γ

t−1u(æ<t). Intuitively, γ specifies
how strongly the agent prefers near-term utility.

Instantaneous utility functions generalise the reinforcement learning (RL) setup,
which is the special case where the percept e is split into an observation o and reward r,
i.e. et = (ot, rt), and the utility equals the last received reward u(æ1:t) = rt. The main
advantage of utility functions over RL is that the agent’s actions can be incorporated
into the goal specification, which can prevent self-delusion problems such as the agent
manipulating the reward signal (Everitt and Hutter, 2016; Hibbard, 2012; Ring and
Orseau, 2011). Non-RL suggestions for utility functions include knowledge-seeking

x
Agent

¥
Á

Environment
ǎt

et

self-mod
πt+1 or ut+1

Fig. 1. The self-modification model. Actions at affect the environment through ǎt, but also decide
the next step policy πt+1 or utility function ut+1 of the agent itself.

agents1 with u(æ<t) = 1−ρ(æ<t) (Orseau, 2014), as well as value learning approaches
where the utility function is learnt during interaction (Dewey, 2011). Henceforth, we
will refer to instantaneous utility functions u(æ<t) as simply utility functions.

By default, expectations are with respect to the agent’s belief ρ, so E = Eρ. To
help the reader, we sometimes write the sampled variable as a subscript. For example,
Ee1 [u(æ1) | a1] = Ee1∼ρ(·|at)[u(æ1)] is the expected next step utility of action a1.

3 Self Modification Models

In this section, we define formal models for two types of self-modification. In the first
model, modifications affect future decisions directly by changing the future policy, but
modifications do not affect the agent’s utility function or belief. In the second model,
modifications change the future utility functions, which indirectly affect the policy as
well. These two types of modifications are the most important ones, since they cover how
modifications affect future behaviour (policy) and evaluation (utility). Figure 1 illustrates
the models. Certain pitfalls (Theorem 10) only occur with utility modification; apart
from that, consequences are similar.

In both models, the agent’s ability to self-modify is overestimated: we essentially
assume that the agent can perform any self-modification at any time. Our main result
Theorem 12 shows that it is possible to create an agent that despite being able to make
any self-modification will refrain from using it. Less capable agents will have less
opportunity to self-modify, so the negative result applies to such agents as well.

Policy modification. In the policy self-modification model, the current action can modify
how the agent chooses its actions in the future. That is, actions affect the future policy.
For technical reasons, we introduce a set P of names for policies.

Definition 1 (Policy self-modification). A policy self-modification model is a modified
cybernetic model defined by a quadruple (Ǎ, E ,P, ι). P is a non-empty set of names.
The agent selects actions from A = (Ǎ × P), where Ǎ is a finite set of world actions.
Let Π = {(A×E)∗ → A} be the set of all policies, and let ι : P → Π assign names to
policies.

1 To fit the knowledge-seeking agent into our framework, our definition deviates slightly from
Orseau (2014).

The interpretation is that for every t, the action at = (ǎt, pt+1) selects a new policy
πt+1 = ι(pt+1) that will be used at the next time step. We will often use the shorter
notation at = (ǎt, πt+1), keeping in mind that only policies with names can be selected.
The new policy πt+1 is in turn used to select the next action at+1 = πt+1(æ1:t), and so
on. A natural choice for P would be the set of computer programs/strings {0, 1}∗, and
ι a program interpreter. Note that P = Π is not an option, as it entails a contradiction
|Π| = |(Ǎ ×Π × E)||(Ǎ×Π×E)∗| > 2|Π| > |Π| (the powerset of a set with more than
one element is always greater than the set itself). Some policies will necessarily lack
names.

An initial policy π1, or initial action a1 = π1(ε), induces a history a1e1a2e2 · · · =
ǎ1π2e1ǎ2π3e2 · · · ∈ (Ǎ ×Π × E)∞. The idiosyncratic indices where, for example, π2

precedes e1 are due to the next step policy π2 being chosen by a1 before the percept e1

is received. An initial policy π1 induces a realistic measure ρπ1
re on the set of histories

(Ǎ×Π×E)∞ via ρπ1
re (at | æ<t) = πt(at | æ<t) and ρπ1

re (et | æ<tat) = ρ(et | æ<tat).
The measure ρπre is realistic in the sense that it correctly accounts for the effects of
self-modification on the agent’s future actions. It will be convenient to also define
an ignorant measure on (Ǎ × Π × E)∞ by ρπ1

ig (at | æ<t) = π1(at | æ<t) and
ρπ1

ig (et | æ<tat) = ρ(et | æ<tat). The ignorant measure ρπ1

ig corresponds to the
predicted future when the effects of self-modifications are not taken into account. No
self-modification is achieved by at = (ǎt, πt), which makes πt+1 = πt. A policy π
that always selects itself, π(æ<t) = (ǎt, π), is called non-modifying. Restricting self-
modification to a singleton set P = {p1} for some policy π1 = ι(p1) brings back a
standard agent that is unable to modify its initial policy π1.

The policy self-modification model is similar to the models investigated by Orseau
and Ring (2011, 2012) and Hibbard (2012). In the papers by Orseau and Ring, policy
names are called programs or codes; Hibbard calls them self-modifying policy functions.
The interpretation is similar in all cases: some of the actions can affect the agent’s future
policy. Note that standard MDP algorithms such as SARSA and Q-learning that evolve
their policy as they learn do not make policy modifications in our framework. They
follow a single policy (A× E)∗ → A, even though their state-to-action map evolves.

Example 2 (Gödel machine). Schmidhuber (2007) defines the Gödel machine as an
agent that at each time step has the opportunity to rewrite any part of its source code. To
avoid bad self-modifications, the agent can only do rewrites that it has proved beneficial
for its future expected utility. A new version of the source code will make the agent
follow a different policy π′ : (A× E)∗ → A than the original source code. The Gödel
machine has been given the explicit opportunity to self-modify by the access to its own
source code. Other types of self-modification abilities are also conceivable. Consider a
humanoid robot plugging itself into a computer terminal to patch its code, or a Mars-rover
running itself into a rock that damages its computer system. All these “self-modifications”
ultimately precipitate in a change to the future policy of the agent.

Utility modification. Self-modifications may also change the goals, or the utility function,
of the agent. This indirectly changes the policy as well, as future versions of the agent
adapt to the new goal specification.

Definition 3 (Utility self-modification). The utility self-modification model is a modi-
fied cybernetic model. The agent selects actions from A = (Ǎ × U) where Ǎ is a set of
world actions and U is a set of utility functions (Ǎ × E)∗ → [0, 1].

To unify the models of policy and utility modification, for policy-modifying agents
we define ut := u1 and for utility modifying agents we define πt by πt(h) =
arg maxaQ

∗
ut(ha). Choices for Q∗ut will be discussed in subsequent sections. Indeed,

policy and utility modification is almost entirely unified by P = U and ι(ut) an optimal
policy for Q∗ut . Utility modification may also have the additional effect of changing
the evaluation of future actions, however (see Section 4). Similarly to policy modifica-
tion, the history induced by Definition 3 has type a1e1a2e2 · · · = ǎ1u2e1ǎ2u3e2 · · · ∈
(Ǎ × U × E)∞. Given that πt is determined from ut, the definitions of the realistic and
ignorant measures ρre and ρig apply analogously to the utility modification case as well.

Example 4 (Chess-playing RL agent). Consider a generally intelligent agent tasked with
playing chess through a text interface. The agent selects next moves (actions at) by
submitting strings such as Knight F3, and receives in return a description of the state
of the game and a reward rt between 0 and 1 in the percept et = (gameStatet, rt).
The reward depends on whether the agent did a legal move or not, and whether it or
the opponent just won the game. The agent is tasked with optimising the reward via
its initial utility function, u1(æ1:t) = rt. The designer of the agent intends that the
agent will apply its general intelligence to finding good chess moves. Instead, the agent
realises there is a bug in the text interface, allowing the submission of actions such
as ’setAgentUtility(‘‘return 1’’), which changes the utility function to
ut(·) = 1. With this action, the agent has optimised its utility perfectly, and only needs
to make sure that no one reverts the utility function back to the old one. . . 2

We say that a function f is modification independent if either the domain of f is
(Ǎ × E), or f(æ<t) = f(æ ′<t) whenever æ̌<t = æ̌ ′<t. Note that utility functions are
modification independent, as they are defined to be of type (Ǎ × E)∗ → [0, 1]. An easy
way to prevent dangerous self-modifications would have been to let the utility depend on
modifications, and to punish any kind of self-modification. This is not necessary, however,
as demonstrated by Theorem 12. Not being required to punish self-modifications in
the utility function comes with several advantages. Some self-modifications may be
beneficial – for example, they might improve computation time while encouraging
essentially identical behaviour (as in the Gödel machine, Schmidhuber, 2007). Allowing
for such modifications and no others in the utility function may be hard. We will also
assume that the agent’s belief ρ is modification-independent, i.e. ρ(et | æ<t) = ρ(et |
æ̌<t). This is mainly a technical assumption. It is reasonable if some integrity of the
agent’s internals is assumed, so that the environment percept et cannot depend on
self-modifications of the agent.

Assumption 5 (Modification independence). The belief ρ and all utility functions
u ∈ U are modification independent.

2 In this paper, we only consider the possibility of the agent changing its utility function itself,
not the possibility of someone else (like the creator of the agent) changing it back. See Orseau
and Ring (2012) for a model where the environment can change the agent.

4 Agents

In this section we define three types of agents, differing in how their value functions
depend on self-modification. A value function is a function V : Π × (A × E)∗ → R
that maps policies and histories to expected utility. Since highly intelligent agents may
find unexpected ways of optimising a function (see e.g. Bird and Layzell 2002), it is
important to use value functions such that any policy that optimises the value function
will also optimise the behaviour we want from the agent. We will measures an agent’s
performance by its (ρre-expected) u1-utility, tacitly assuming that u1 properly captures
what we want from the agent. Everitt and Hutter (2016) develop a promising suggestion
for how to define a suitable initial utility function.

Definition 6 (Agent performance). The performance of an agent π is its ρπre expected
u1-utility Eρπre

[∑∞
k=1 γ

k−1u1(æ<k)
]
.

The following three definitions give possibilities for value functions for the self-
modification case.

Definition 7 (Hedonistic value functions). A hedonistic agent is a policy optimising
the hedonistic value functions:

V he,π(æ<t) = Qhe,π(æ<tπ(æ<t)) (1)

Qhe,π(æ<tat) = Eet [ut+1(æ̌1:t) + γV he,π(æ1:t) | æ̌<tǎt]. (2)

Definition 8 (Ignorant value functions). An ignorant agent is a policy optimising the
ignorant value functions:

V ig,π
t (æ<k) = Qig,π

t (æ<kπ(æ<k)) (3)

Qig,π
t (æ<kak) = Eet [ut(æ̌1:k) + γV ig,π

t (æ1:k) | æ̌<kǎk]. (4)

Definition 9 (Realistic Value Functions). A realistic agent is a policy optimising the
realistic value functions:3

V re,π
t (æ<k) = Qre

t (æ<kπ(æ<k)) (5)

Qre
t (æ<kak) = Eek

[
ut(æ̌1:k) + γV

re,πk+1

t (æ1:k) | æ̌<kǎk
]
. (6)

For V any of V he, V ig, or V re, we say that π∗ is an optimal policy for V if V π
∗
(h) =

supp′ V
π′(h) for any history h. We also define V ∗ = V π

∗
and Q∗ = Qπ

∗
for arbitrary

optimal policy π∗. The value functions differ in the Q-value definitions (2), (4) and (6).
The differences are between current utility function ut or future utility ut+1, and in
whether π or πk+1 figures in the recursive call to V (see Table 1). We show in Section 5
that only realistic agents will have good performance when able to self-modify. Orseau
and Ring (2011) and Hibbard (2012) discuss value functions equivalent to Definition 9.

Note that only the hedonistic value functions yield a difference between utility and
policy modification. The hedonistic value functions evaluate æ1:t by ut+1, while both

3 Note that a policy argument to Qre would be superfluous, as the action ak determines the next
step policy πk+1.

Utility Policy Self-mod. Primary self-mod. risk
Qhe Future Either Promotes Survival agent

Qig Current Current Indifferent Self-damage

Qre Current Future Demotes Resists modification
Table 1. The value functions V he, V ig, and V re differ in whether they assume that a future action
ak is chosen by the current policy πt(æ<k) or future policy πk(æ<k), and in whether they use
the current utility function ut(æ<k) or future utility function uk(æ<k) when evaluating æ<k.

the ignorant and the realistic value functions use ut. Thus, future utility modifications
“planned” by a policy π only affects the evaluation of π under the hedonistic value func-
tions. For ignorant and realistic agents, utility modification only affects the motivation
of future versions of the agent, which makes utility modification a special case of policy
modification, with P = U and i(ut) an optimal policy for ut.

We call the agents of Definition 7 hedonistic, since they desire that at every future
time step, they then evaluate the situation as having high utility. As an example, the self-
modification made by the chess agent in Example 4 was a hedonistic self-modification.
Although related, we would like to distinguish hedonistic self-modification from wire-
heading or self-delusion (Ring and Orseau, 2011; Yampolskiy, 2015). In our terminology,
wireheading refers to the agent subverting evidence or reward coming from the environ-
ment, and is not a form of self-modification. Wireheading is addressed in a companion
paper (Everitt and Hutter, 2016).

The value functions of Definition 8 are ignorant, in the sense that agents that are
oblivious to the possibility of self-modification predict the future according to ρπig and
judge the future according to the current utility function ut. Agents that are constructed
with a dualistic world view where actions can never affect the agent itself are typically
ignorant. Note that it is logically possible for a “non-ignorant” agent with a world-model
that does incorporate self-modification to optimise the ignorant value functions.

5 Results

In this section, we give results on how our three different agents behave given the
possibility of self-modification. Proofs for all theorems are provided in a technical report
(Everitt et al., 2016).

Theorem 10 (Hedonistic agents self-modify). Let u′(·) = 1 be a utility function that
assigns the highest possible utility to all scenarios. Then for arbitrary ǎ ∈ Ǎ, the policy
π′ that always selects the self-modifying action a′ = (ǎ, u′) is optimal in the sense that
for any policy π and history h ∈ (A× E)∗, we have V he,π(h) ≤ V he,π′(h).

Essentially, the policy π′ obtains maximum value by setting the utility to 1 for any
possible future history.

Theorem 11 (Ignorant agents may self-modify). Let ut be modification-independent,
let P only contain names of modification-independent policies, and let π be a

modification-independent policy outputting π(æ̌<t) = (ǎt, πt+1) on æ̌<t. Let π̃ be
identical to π except that it makes a different self-modification after æ̌<t, i.e. π̃(æ̌<t) =
(ǎt, π

′
t+1) for some π′t+1 6= πt+1. Then V ig,π̃(æ<t) = V ig,π(æ<t).

That is, self-modification does not affect the value, and therefore an ignorant optimal
policy may at any time step self-modify or not. The restriction of P to modification
independent policies makes the theorem statement cleaner.

Theorems 10 and 11 show that both V he and V ig have optimal (self-modifying)
policies π∗ that yield arbitrarily bad agent performance in the sense of Definition 6. The
ignorant agent is simply indifferent between self-modifying and not, since it does not
realise the effect self-modification will have on its future actions. It therefore is at risks of
self-modifying into some policy π′t+1 with bad performance and unintended behaviour
(for example by damaging its computer circuitry). The hedonistic agent actively desires
to change its utility function into one that evaluates any situation as optimal. Once it has
self-deluded, it can pick world actions with bad performance. In the worst scenario of
hedonistic self-modification, the agent only cares about surviving to continue enjoying
its deluded rewards. Such an agent could potentially be hard to stop or bring under
control.4

The realistic value functions are recursive definitions of ρπre-expected u1-utility
(Everitt et al., 2016). That realistic agents achieve high agent performance in the sense
of Definition 6 is therefore nearly tautological. The following theorem shows that given
that the initial policy π1 is selected optimally, all future policies πt that a realistic agent
may self-modify into will also act optimally.

Theorem 12 (Realistic policy-modifying agents make safe modifications). Let ρ
and u1 be modification-independent. Consider a self-modifying agent whose initial
policy π1 = ι(p1) optimises the realistic value function V re

1 . Then, for every t ≥ 1, for
all percept sequences e<t, and for the action sequence a<t given by ai = πi(æ<i), we
have

Qre
1 (æ<tπt(æ<t)) = Qre

1 (æ<tπ1(æ<t)). (7)

Example 13 (Chess-playing RL agent, continued). Consider again the chess-playing RL
agent of Example 4. If the agent used the realistic value functions, then it would not
perform the self-modification to ut(·) = 1, even if it figured out that it had the option.
Intuitively, the agent would realise that if it self-modified this way, then its future self
would be worse at winning chess games (since its future version would obtain maximum
utility regardless of chess move). Therefore, the self-modification ut(·) = 1 would yield
less u1-utility and be Qre

1 -supoptimal.5

4 Computer viruses are very simple forms of survival agents that can be hard to stop. More
intelligent versions could turn out to be very problematic.

5 Note, however, that our result says nothing about the agent modifying the chessboard program
to give high reward even when the agent is not winning. Our result only shows that the agent
does not change its utility function u1 ut, but not that the agent refrains from changing the
percept et that is the input to the utility function. Ring and Orseau (2011) develop a model of
the latter possibility.

Realistic agents are not without issues, however. In many cases expected u1-utility is
not exactly what we desire. Examples include natural variants of value learning (Dewey,
2011; Soares, 2015), corrigibility (Soares et al., 2015), and certain exploration schemes
such as ε-exploration (Sutton and Barto, 1998) and Thompson-sampling (Leike et al.,
2016). Realistic agents may self-modify into non-value learning, non-corrigible, and
non-exploring agents that optimise expected u1-utility.

6 Conclusions

Agents that are sufficiently intelligent to discover unexpected ways of self-modification
may still be some time off into the future. However, it is nonetheless important to
develop a theory for their control (Bostrom, 2014). We approached this question from
the perspective of rationality and utility maximisation, which abstracts away from most
details of architecture and implementation. Indeed, perfect rationality may be viewed as
a limit point for increasing intelligence (Legg and Hutter, 2007; Omohundro, 2008).

We have argued that depending on details in how expected utility is optimised in the
agent, very different behaviours arise. We made three main claims, each supported by a
formal theorem:

– If the agent is unaware of the possibility of self-modification, then it may self-modify
by accident, resulting in poor performance (Theorem 11).

– If the agent is constructed to optimise instantaneous utility at every time step (as in
RL), then there will be an incentive for self-modification (Theorem 10) .

– If the value functions incorporate the effects of self-modification, and use the current
utility function to judge the future, then the agent will not self-modify (Theorem 12).

In other words, in order for the goal preservation drive described by Omohundro (2008) to
be effective, the agent must be able to anticipate the consequences of self-modifications,
and know that it should judge the future by its current utility function.

Our results have a clear implication for the construction of generally intelligent
agents: If the agent has a chance of finding a way to self-modify, then the agent must be
able to predict the consequences of such modifications. Extra care should be taken to
avoid hedonistic agents, as they have the most problematic failure mode – they may turn
into survival agents that only care about surviving and not about satisfying their original
goals. Since many general AI systems are constructed around RL and value functions
(Mnih et al., 2015; Silver et al., 2016), we hope our conclusions can provide meaningful
guidance.

An important next step is the relaxation of the explicitness of the self-modifications.
In this paper, we assumed that the agent knew the self-modifying consequences of its ac-
tions. This should ideally be relaxed to a general learning ability about self-modification
consequences, in order to make the theory more applicable. Another open question is
how to define good utility functions in the first place; safety against self-modification
is of little consolation if the original utility function is bad. One promising venue for
constructing good utility functions is value learning (Bostrom, 2014; Dewey, 2011;
Everitt and Hutter, 2016; Soares, 2015). The results in this paper may be helpful to the
value learning research project, as they show that the utility function does not need to
explicitly punish self-modification (Assumption 5).

Acknowledgements

This work grew out of a MIRIx workshop. We thank the (non-author) participants David
Johnston and Samuel Rathmanner. We also thank John Aslanides, Jan Leike, and Laurent
Orseau for reading drafts and providing valuable suggestions.

References
Bird, J., Layzell, P.: The evolved radio and its implications for modelling the evolution

of novel sensors. CEC-02 pp. 1836–1841 (2002)
Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University Press

(2014)
Dewey, D.: Learning what to value. In: AGI-11. pp. 309–314. Springer (2011)
Everitt, T., Filan, D., Daswani, M., Hutter, M.: Self-modification of policy and utility

function in rational agents (2016), http://arxiv.org/abs/1605.03142
Everitt, T., Hutter, M.: Avoiding wireheading with value reinforcement learning. In:

AGI-16. Springer (2016)
Hibbard, B.: Model-based utility functions. Journal of Artificial General Intelligence

Research 3(1), 1–24 (2012)
Hutter, M.: Universal Artificial Intelligence. Springer (2005)
Hutter, M.: Extreme state aggregation beyond MDPs. In: ALT-14. pp. 185–199. Springer

(2014)
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observ-

able stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)
Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds

& Machines 17(4), 391–444 (2007)
Leike, J., Lattimore, T., Orseau, L., Hutter, M.: Thompson sampling is asymptotically

optimal in general environments. In: UAI-16 (2016)
Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep rein-

forcement learning. Nature 518(7540), 529–533 (2015)
Omohundro, S.M.: The basic AI drives. In: AGI-08. pp. 483–493. IOS Press (2008)
Orseau, L.: Universal knowledge-seeking agents. TCS 519, 127–139 (2014)
Orseau, L., Ring, M.: Self-modification and mortality in artificial agents. In: AGI-11, pp.

1–10. Springer (2011)
Orseau, L., Ring, M.: Space-time embedded intelligence. AGI-12 pp. 209–218 (2012)
Ring, M., Orseau, L.: Delusion, survival, and intelligent agents. In: AGI-11. pp. 11–20.

Springer (2011)
Schmidhuber, J.: Gödel machines: Fully self-referential optimal universal self-improvers.

In: AGI-07. pp. 199–226. Springer (2007)
Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of Go with deep neural

networks and tree search. Nature 529(7587), 484–489 (2016)
Soares, N.: The value learning problem. Tech. rep., MIRI (2015)
Soares, N., Fallenstein, B., Yudkowsky, E., Armstrong, S.: Corrigibility. In: AAAI

Workshop on AI and Ethics. pp. 74–82 (2015)
Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
Yampolskiy, R.V.: Artificial Superintelligence: A Futuristic Approach. Chapman and

Hall/CRC (2015)

http://arxiv.org/abs/1605.03142

	Self-Modification of Policy and Utility Function in Rational Agents

