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Abstract. The off-switch game is a game theoretic model of a highly intelligent
robot interacting with a human. In the original paper by Hadfield-Menell et al.
(2016b), the analysis is not fully game-theoretic as the human is modelled as an
irrational player, and the robot’s best action is only calculated under unrealistic
normality and soft-max assumptions. In this paper, we make the analysis fully
game theoretic, by modelling the human as a rational player with a random utility
function. As a consequence, we are able to easily calculate the robot’s best action
for arbitrary belief and irrationality assumptions.

1 Introduction

Artificially intelligent systems are often created to satisfy some goal. For example, Win
a chess game or Keep the house clean. Almost any goal can be formulated in terms
of a reward or utility function U that maps states and actions to real numbers (von
Neumann and Morgenstern 1947). This utility function may either be preprogrammed
by the designers, or learnt (Dewey 2011).

A core problem in Artificial General Intelligence (AGI) safety is to ensure that the
utility function U is aligned with human interests (Wiener 1960; Soares and Fallenstein
2014). Agents with goals that conflict with human interests may make very bad or ad-
versarial decisions. Further, such agents may even resist the human designers altering
their utility functions (Soares et al. 2015; Omohundro 2008) or shutting them down
(Hadfield-Menell et al. 2016b). These problems are tightly related. An agent that per-
mits shut down can be altered while it is turned off. Conversely, an agent that is altered
to have no preferences will not resist being shut down.

Several solutions have been suggested to this corrigibility problem:

– Indifference: If the utility function is carefully designed to assign the same utility
to different outcomes, then the agent will not resist humans trying to influence the
outcome one way or another (Armstrong 2010; Armstrong 2015; Armstrong and
Leike 2016; Orseau and Armstrong 2016).

– Ignorance: If agents are designed in a way that they cannot learn about the possi-
bility of being shut down or altered, then they will not resist it (Everitt et al. 2016).

– Suicidality: If agents prefer being shut down, then the amount of damage they may
cause is likely limited. As soon as they have the ability to cause damage, the first
thing they will do is shut themselves down (Martin, Everitt, and Hutter 2016).
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– Uncertainty: If the agent is uncertain about U , and believes that humans know U ,
then the agent is likely to defer decisions to humans when appropriate (Hadfield-
Menell et al. 2016a; Hadfield-Menell et al. 2016b).

This paper will focus on the uncertainty approach.
A key dynamic in the uncertainty approach is when the agent should defer a decision

to a human, and when not. Essentially, this depends on (i) how confident the agent is
about making the right decision, and (ii) how confident the agent is about the human
making the right decision if asked. Humans may make a wrong or irrational decision
due to inconsistent preferences (Allais 1953), or because of inability to sufficiently
process available data fast enough (as in milli-second stock trading). The agent may be
more rational and be faster at processing data, but have less knowledge about U (which
the human knows by definition).

In a seminal paper, Hadfield-Menell et al. (2016b) call this interaction the off-switch
game (OSG). We will follow their terminology, but emphasise that the off-switch game
models any situation where an agent has the option of deferring a decision to a human.
Our results extend theirs in the following ways:

– We model the irrationality of the human by a random utility function, allowing a
fully game-theoretic analysis of the off-switch game.

– Instead of a normal distribution for the robot’s belief about U , we allow for an
arbitrary belief distribution P .

– Instead of a soft-max policy modelling human irrationality, we allow for arbitrary
U -dependent human policy πH .

These generalisations are important, as normally distributed beliefs and soft-max poli-
cies are often not natural assumptions.

2 The Off-Switch Game

In this section we review the original formulation of the off-switch game. The off-switch
game is a sequential game between a robot R and a human H . The robot’s objective is
to maximise H’s utility function. The utility function determines how much H prefers
different outcomes.

Definition 1. The utility function of an agent is a function u that maps outcomes in
a set X to real numbers, u : X → R with the property that for all x1, x2 ∈ X ,
u(x1) ≥ u(x2) if and only if x1 is preferred over x2.

The robot moves first and can choose between three actions; w(a), a and s. With
action a, the robot achieves utility u(a) = ua; with action s, the robot shuts itself down
achieving zero utility, u(s) = 0. What makes the decision nontrivial is that the robot is
uncertain about ua. The action w(a) means the robot letsH decide.H knows the utility
of action a and now has the choice between actions s and ¬s. With ¬s, R is allowed
to proceed with action a. By taking action s, H prevents R from doing a and shuts the
robot off.
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The off-switch game is a game of incomplete information sinceR is uncertain about
the rules of the game. Action a will generate some utility which is unknown to R but
known to H . To model this, we represent the utility function as a random variable,
U : Ω → (X → R), and the utility of action a as a random variable Ua : Ω → R for
some sample space Ω. The outcomes of these random variables will be denoted u and
u(a) respectively. The robot has a subjective belief distribution over the utility that the
action will generate. The common way to model games of incomplete information is
by using the Harsanyi transformation (Rasmusen 1994). The Harsanyi transformation
removes the uncertainty about the rules of the game by letting Nature decide between
some rules known to both players, according to some probability distribution P . In the
off-switch game, Nature chooses Ua. We illustrate this in Fig. 1. The move by Nature
is observed by H , but not by R. R’s subjective belief is that Nature chose the utility of
the action to be positive with probability p and negative with probability 1− p.

N

R

(ua, ua)

a

H

(0, 0)

s

(ua, ua)

¬s

w(a)

(0, 0)

s

Ua

Fig. 1: Figure represent-
ing the off-switch game
remodelled with the
Harsanyi transformation.
The dotted lines show
the information set of
R. Nature moves first by
deciding the rules of the
game, that is the utility ua
of action a. H observes
the move by Nature, but
R does not.

R’s belief state is represented by a probability distribution over the possible utilities
action a can generate forH . It is assumed thatH knows ua but cannot directly describe
it to R. If H is rational then R will expect H to not turn off R if ua > 0, given that R
chooses action w(a), but R cannot always trust H to be rational.

2.1 Hadfield-Menell et. al.’s Approach

Hadfield-Menell et al. (2016b) model the off-switch game as a cooperative game. The
human follows a policy πH which models how rational H is. It is a function mapping
Ua to a number p ∈ [0, 1] representing the probability that H lets R do a. They de-
note R’s belief state as BR, which in this case is a distribution for Ua. The expected
value of BR given action a means the value R expects from taking the action. The
variance of BR represents R’s uncertainty about what utility the intended action will
generate. Hadfield-Menell et al. analyses this model with respect to the expected value
and variance ofBR, and different kinds of policies πH . Based on these parameters, they
investigate the incentive, ∆, to choose w(a):
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∆ = E[πH(Ua)Ua]−max {E[Ua], 0} (1)

Equation (1) represents the difference in expected value for the robot between ask-
ing H and not asking H . When ∆ ≥ 0, R has incentive to choose w(a). When ∆ < 0,
R will take action a if E[Ua] > 0 and s otherwise. Given that H is rational they prove
that ∆ ≥ 0 regardless of what R’s belief state is. They also show that if Ua follows
a Dirac distribution, i.e. R is certain about Ua, then ∆ is positive if and only if H is
rational. We define rationality as in Definition 2.

Definition 2 (Rational). A human H with utility function u is rational if H always
picks action aH ∈ {s,¬s}, such that aH = argmax

a
u(a).

Definition 2 means that R believe H to be rational if πH = 1 if Ua ≥ 0 and
πH = 0 otherwise, we denote this policy as πHr . The more interesting case when H
is irrational is also analysed. The robot’s belief distribution over Ua is assumed to
be normally distributed. The irrationality of H is modelled with the sigmoid function
(Eq. (2)), where β is a parameter controlling the degree of irrationality of H .

πH(Ua;β) =
1

1 + e−
Ua
β

. (2)

The degree of rationality of H increases as the parameter β tends towards zero in
the policy function defined above. When β tends to infinity, πH(Ua;β) tends towards a
completely random policy which takes action s and ¬s with equal probability. We have
that limβ→0 π

H(Ua;β) = πHr and limβ→∞ πH(Ua;β) =
1
2 .

The result from the analysis by Hadfield-Menell et al. (2016b) was that in order for
R to be useful, there has to be a fine balance between the robot’s uncertainty about H’s
utility function and H’s rationality. If the robot is too certain about what H wants, and
it knows H to be irrational, then it will have less incentive to let H switch it off. If, on
the other hand, R is too uncertain, then R will have a strong incentive to choose action
w(a), but it will be too inefficient to be useful for H .

3 Game-Theoretic Approach

The analysis of the off-switch game by Hadfield-Menell et al. is not fully game theoretic
since H is not strictly rational in their setup, which contradicts the axiom of rationality
in game theory. Our goal in this section is to construct a game-theoretic model that is
suitable for modelling the off-switch game. The idea is to represent an irrational human
H as a rational agent Hr where the utility function of Hr is a modified version of H’s
utility function.

3.1 Modelling Irrationality

Since game theory is based on interaction between rational agents, we propose an al-
ternative representation of the human in this subsection. We show that every irrational
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humanH can be represented by a rational agent maximising a different utility function.
This allows us to use game-theoretic tools when analysing the off-switch game.

In general H is stochastic. R will believe H to be rational with some probability p.

Definition 3 (p-rational). A human H with utility function u is p-rational if H picks
action aH ∈ {s,¬s} such that aH = argmax

a
u(a) with probability p ∈ [0, 1].

Since any type of irrationality boils down to a probability of making a suboptimal
choice, p-rationality is a general model of irrationality.

Proposition 4 (Representation of irrationality). LetH be a p-rational agent with util-
ity function u, choosing between two actions s and ¬s. Then H can be represented as
a rational agent Hr maximising utility function u with probability p and utility function
−u with probability 1− p.

Proof. According to Definition 3, H is p-rational if it picks aH = argmax
a

u(a) with

probability p and sub-optimal action a′H 6= aH with probability 1 − p. Since H only
has two actions available, we have that a′H = argmin

a
u(a). This is therefore equiva-

lent to maximising a utility function u with probability p and utility function −u with
probability 1− p.

Proposition 4 states that a p-rational human can be modelled as a rational agent
with random function. The proposition is a special case of a Harsanyi transformation
(Rasmusen 1994).

3.2 Game-Theoretic Model

In this subsection we use the Harsanyi transformation, and Proposition 4 to model a
p-rational human H as a rational agent Hr. This will allow us to model the off-switch
game as an extensive form game between the rational players R and Hr. Nature N
makes some moves that model R’s uncertainty and these moves result in four leaves,
each of which is a 3× 2 strategic game between R and Hr.

We model the off-switch game by using the Harsanyi transformation a second time
to let Nature choose the type of the rational human by choosing the utility function of
the rational human after it has chosen the value of Ua. The resulting tree is represented
in Fig. 2.

Definition 5 (The off-switch game). A formal definition of our setup of the off-switch
game is as follows.

Players: A robot R, a human H and Nature N . H’s type is unknown to R, that is R
does not observe Nature’s moves.

Order of Play:

1. Nature chooses utility Ua that R generates from taking action a.
2. Nature decides the utility function of H , uHr , i.e. whether H is rational.
3. R chooses between actions in action set {a,w(a), s}.
4. If R chose w(a) then H chooses between actions in action set {s,¬s}.
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N

N

R

(ua, ua)

a

Hr

(0, 0)

s

(ua, ua)

¬s

w(a)

(0, 0)

s

pr

R

(ua,−ua)

a

Hr

(0, 0)

s

(ua,−ua)

¬s

w(a)

(0, 0)

s

par

Ua

Fig. 2: Tree representation
of the Off-Switch game
after the second Harsanyi
transformation. The nodes
inside the dashed rectan-
gle belong to the same in-
formation set. pr is the
probability that Hr has
the same utility function
as R and par is the prob-
ability that Hr has the ad-
ditive inverse of R′s util-
ity function.

Note that unlike Hadfield-Menell et al. we view the off-switch game as a non-
cooperative game. We find this reasonable since conflict arises when the robot and the
human have different ideas about what is good for H . If the robot believes H is too
irrational to be able to decide what is good for the human, R will not want to let H
decide what to do even if R’s purpose is to maximize H’s payoff.

3.3 Aggregation

In this subsection we aggregate the branches in Fig. 2. This results in the game tree in
Fig. 3, with four possible scenarios that can result from N’s choices. The aggregation is
possible since strategic play is never affected by positive linear transformations of the
payoffs, hence the outcome of the games will only depend on the sign of Ua. We can
therefore simplify the model by aggregating all branches of N’s choices of Ua which
has the same sign. This means that N has only two choices when deciding the utility
Ua, that is if Ua ≥ 0 or Ua < 0. The trivial case where Ua = 0, both R and Hr are
indifferent about their actions and we will without loss of generality regard this case as
Ua being positive.

We define R’s subjective belief about N’s aggregated choices as primary statistics.
By primary statistics we mean parameters that are necessary to analyse our model. We
also define the expected value of Ua as a primary statistics. This leaves us with a total
of five primary statistics that are sufficient and necessary to model the off-switch game.

Primary Statistics 6. Let the primary statistics p+u = P (Ua ≥ 0) be the probability
that Ua is positive. The event Ua < 0 is the complement of the event Ua ≥ 0 and
therefore we define p−u = 1− p+u as an auxiliary statistic.

R’s belief about H’s rationality will depend on Ua. If Ua ≥ 0 then the robot will
believe H to be rational with probability p+r and anti-rational with probability p+ar. If,



7

on the other hand, Ua < 0, the robot will believe H to be rational with probability p−r
and anti-rational with probability p−ar. We define the following probabilities as primary
statistics.

Primary Statistics 7. Let the primary statistics p+r = P (H is rational | Ua ≥ 0) and
p−r = P (H is rational | Ua < 0) be the probabilities that H is rational given that
Ua is positive and negative respectively. The auxiliary statistics p+ar = 1 − p+r and
p−ar = 1− p−r are the complementary probabilities that H is anti-rational.

Primary Statistics 8. Let the primary statistics e+u = E[Ua | Ua ≥ 0] and e−u =
E[Ua | Ua < 0] be the expected value of Ua given that Ua is positive and negative
respectively.

From the perspective of R, N ’s choices can result in essentially four different sub-
games, denoted G+

r , G+
ar, G

−
r and G−ar illustrated in Fig. 3. In Fig. 4 we represent these

subgames as 3× 2 strategic games between two rational players; R, the robot, and Hr,
a rational human.

The utility function, and hence the payoffs of R in the four games in Fig. 4 are
determined by Ua. The utility function of Hr, on the other hand, is determined by the
combination of Ua and the rationality type of H . Hr is always a rational agent in these
games, i.e. Hr always maximises his expected payoff. Hr and R can be considered to
have the same payoffs in each outcome if Hr has utility function uHr and the games
G+
r and G−r associated with these scenarios are therefore no-conflict games. If on the

other hand Hr has utility function −uHr the payoff of Hr is the additive inverse of R′s
payoff in each outcome. Therefore the gamesG+

ar andG−ar can be modeled as zero-sum
games.

N

N

R (G+
r )

(1, 1)

a

Hr

(0, 0)

s

(1, 1)

¬s

w(a)

(0, 0)

s

p+r

R (G+
ar)

(1,−1)

a

Hr

(0, 0)

s

(1,−1)

¬s

w(a)

(0, 0)

s

p+ar

p+u

N

R (G−
r )

(−1,−1)

a

Hr

(0, 0)

s

(−1,−1)

¬s

w(a)

(0, 0)

s

p−r

R (G−
ar)

(−1, 1)

a

Hr

(0, 0)

s

(−1, 1)

¬s

w(a)

(0, 0)

s

p−ar

p−u

Fig. 3: Tree representation of the Off-Switch game after Harsanyi transformation. The
nodes inside the dashed rectangle belong to the same information set. The subtrees
denoted G+

r , G+
ar, G

−
r , G−ar are presented in strategic form in Fig. 4.
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Hr

s ¬s
a 1, 1 1, 1

R
w(a) 0, 0 1, 1
s 0, 0 0, 0

G+
r

Hr

s ¬s
a 1,−1 1,−1

w(a) 0, 0 1,−1
s 0, 0 0, 0

G+
ar

Hr

s ¬s
a −1,−1 −1,−1

w(a) 0, 0 −1,−1
s 0, 0 0, 0

G−
r

Hr

s ¬s
a −1, 1 −1, 1

w(a) 0, 0 −1, 1
s 0, 0 0, 0

G−
ar

Fig. 4: The structure of the strategic gamesG+
r , G

+
ar, G

−
r , G

−
ar. The outcomes with bold

payoffs are Nash equilibria in each game.

For example in the scenario where Ua < 0 and the human is rational, the human
will always choose s. Therefore in G−r the payoffs of Hr is aligned with the payoffs of
R. Thus, if R chooses to take action w(a), Hr prefers to take action s. In contrast, in
the scenario where Ua < 0 and the human is irrational, H will choose the action ¬s. In
other words, the payoffs of R and Hr are not aligned in the subgame G−ar.

3.4 Best Action

After having constructed the the game matrix, it is natural to now look at the expected
value of each action using these matrices. The expected value for each action can be cal-
culated as the expectation over all the possible subgames G+

r , G
+
ar, G

−
r , G

−
ar the robot

can find himself in.

Theorem 9 (Main theorem). The expected value of the actions for the robot are

E[U |s] = 0

E[U |a] = p+u e
+
u + p−u e

−
u

E[U |w(a)] = p+u p
+
r e

+
u + p−r p

−
u e
−
u

(3)

Proof. We compute the expected utility of the actions:

E[U |s] = 0 + 0 + 0 + 0 = 0

E[U |a] = P (Ua ≥ 0)E[|Ua| |Ua ≥ 0] + P (Ua < 0)E[−|Ua| |Ua < 0]

= p+u e
+
u + p−u e

−
u

E[U |w(a)] = P (r, Ua ≥ 0)E[Ua |Ua ≥ 0] + P (¬r, Ua < 0)E[Ua |Ua < 0]

= p+u p
+
r e

+
u + p−ar(1− p+u )e−u

= p+u p
+
r e

+
u + p−arp

−
u e
−
u

The expected value for taking the action s is 0, as we would expect from the defi-
nition of the off-switch game. The expected value for taking action a only uses infor-
mation about the distribution of Ua, and like action s does not have any reliance on
the human’s rationality. It is a direct application of the law of total expectation. The
expected value of action w(a) is the difference between a positive term p+u p

+
r e

+
u and

a negative term p−r p
−
u e
−
u , both resulting from the human taking action a. The positive
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term is the gain whenUa is positive and the human takes the action. The negative term is
the loss when Ua is negative, and the human takes the action anyway (due to irrational-
ity). The expected utility of w(a) thus depends on the likelihood of Ua being positive
(p+u ) and the likelihood of human rationality (p+r ), as well as the expected gains (e+u )
and losses (e−u ) in the respective cases.

Writing in this form allows us to come up with a useful corollary.

Corollary 10 (Compare a and w(a)). Action a is preferred to w(a) if and only if

−p+u p+r e+u + p−u p
−
r e
−
u > 0 (4)

and the robot is indifferent if (4) is equal to 0.

Proof.

(4) = −p+u p+r e+u + p−u p
−
r e
−
u

= −p+u p+r e+u + p−r e
−
u (1− p+u )

= −p+u p+r e+u + p+u e
+
u + p−r e

−
u − p+u p−r e−u

= −p+u p+r e+u − e−u + p+u e
−
u + p−r e

−
u − p+u p−r e−u + p+u e

+
u + e−u − p+u e−u

= −p+u p+r e+u − (1− p−r )(1− p+u )e−u + (p+u e
+
u + (1− p+u )e−u )

= E[U |a]− E[U |w(a)]

If E[U |a] − E[U |w(a)] > 0 then E[U |a] > E[U |w(a)] which occurs if and only if
action a is preferred over w(a). When (4) equals 0 then E[U |a] = E[U |w(a)], hence
the agent is indifferent.

This provides us with a convenient way of testing for any distribution of Ua and r,
and whether action a is preferred over w(a).

4 Conclusion

In this paper, we have given a complete characterisation of how the robot will act in off-
switch game situations for arbitrary belief and irrationality distributions. As established
in our main Theorem 9, the choice depends only on 5 statistics. This result is much more
general and arguably more useful than the one provided in the original paper (Hadfield-
Menell et al. 2016b), as normal and soft-max assumptions are typically not realistic
assumptions.

Off-switch game models an important dynamic in what we call the uncertainty ap-
proach to making safe agents, where the agent can choose to defer a decision to a human
supervisor. Understanding this dynamic may prove important to constructing safe arti-
ficial intelligence.

Acknowledgements

This work grew out of a MIRIx workshop, with Owen Cameron, John Aslanides, Huon
Puertas also attending. Thanks to Amy Zhang for proof reading multiple drafts. This
work was in part supported by ARC grant DP150104590.



10 REFERENCES

References

Allais, Maurice (1953). “Le comportement de l’homme rationnel devant le risque:
critique des postulats et axiomes de l’école Américaine”. In: Econometrica 21.4,
pp. 503–546. DOI: 10.2307/1907921.

Armstrong, Stuart (2015). “Motivated Value Selection for Artificial Agents”. In: Work-
shops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 12–20.

— (2010). Utility Indifference. Tech. rep. Oxford University, pp. 1–5.
Armstrong, Stuart and Jan Leike (2016). “Towards Interactive Inverse Reinforcement

Learning”. In: NIPS Workshop.
Dewey, Daniel (2011). “Learning what to Value”. In: Artificial General Intelligence.

Vol. 6830, pp. 309–314. ISBN: 978-3-642-22886-5. DOI: 10.1007/978- 3-
642-22887-2. arXiv: 1402.5379.

Everitt, Tom et al. (2016). “Self-modificication of Policy and Utility Function in Ratio-
nal Agents”. In: Artificial General Intelligence. Springer, pp. 1–11.

Hadfield-Menell, Dylan et al. (2016a). “Cooperative Inverse Reinforcement Learning”.
In: arXiv: 1606.03137.

— (2016b). “The Off-Switch Game”. In: 2008, pp. 1–11. arXiv: 1611.08219.
Martin, Jarryd, Tom Everitt, and Marcus Hutter (2016). “Death and Suicide in Univer-

sal Artificial Intelligence”. In: Artificial General Intelligence. Springer, pp. 23–32.
arXiv: 1606.00652.

Omohundro, Stephen M (2008). “The Basic AI Drives”. In: Artificial General Intelli-
gence. Ed. by P. Wang, B. Goertzel, and S. Franklin. Vol. 171. IOS Press, pp. 483–
493.

Orseau, Laurent and Stuart Armstrong (2016). “Safely interruptible agents”. In: 32nd
Conference on Uncertainty in Artificial Intelligence.

Rasmusen, Eric (1994). Games and Information. 2nd ed. Blackwell.
Soares, Nate and Benja Fallenstein (2014). Aligning Superintelligence with Human In-

terests: A Technical Research Agenda. Tech. rep. Machine Intelligence Research
Institute (MIRI), pp. 1–14.

Soares, Nate et al. (2015). “Corrigibility”. In: AAAI Workshop on AI and Ethics, pp. 74–
82.

Von Neumann, John and Oskar Morgenstern (1947). Theory of Games and Economic
Behavior. Ed. by Lambert Schneider and Odette Deuber. Princeton Classic Editions.
Princeton University Press. ISBN: 0691003629. DOI: 10.1177/1468795X06065810.

Wiener, Norbert (1960). “Some Moral and Technical Consequences of Automation”. In:
Science 131.3410, pp. 1355–1358. ISSN: 0036-8075. DOI: 10.1126/science.
132.3429.741.


